[f2ca4d]: / utils / evalF.py

Download this file

214 lines (183 with data), 9.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import sys
import os
import evalMetrics as METRICS
import PP
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import augmentations as AUG
#---------------------------------------------
#Evaluation functions
#---------------------------------------------
def evalModelX(model, num_labels, postfix, main_folder_path, eval_method, gpu0, useGPU,
patch_size = 70, eval_metric = 'iou', test_augm = False, extra_patch = 30):
eval_list = main_folder_path + 'val' + postfix + '.txt'
img_list = open(eval_list).readlines()
v = 0
v_priv = 0
for img_str in img_list:
img_str = img_str.rstrip()
_, gt, out, _ = predict(os.path.join(main_folder_path, img_str), model, num_labels, postfix,
main_folder_path, eval_method, gpu0, useGPU, patch_size=patch_size,
test_augm = test_augm, extra_patch = extra_patch)
curr_eval = METRICS.metricEval(eval_metric, out, gt, num_labels)
v+=curr_eval
return v / len(img_list)
def testPredict(img, model, num_labels, eval_method, gpu0, useGPU, stride= 50, patch_size = 70, test_augm = True, extra_patch = 30, get_soft = False):
if eval_method == 0:
if useGPU:
out = model(Variable(torch.from_numpy(img).float(),volatile = True).cuda(gpu0))
else:
out = model(Variable(torch.from_numpy(img).float(),volatile = True))
out = out.data[0].cpu().numpy()
elif eval_method == 1:
out = predictByPatches(img, model, num_labels, useGPU, gpu0,
stride = stride, patch_size = patch_size,
test_augm = test_augm, extra_patch = extra_patch)
out = out.squeeze()
if get_soft:
return out
#take argmax to get predictions
out = np.argmax(out, axis = 0)
#remove batch and label dimension
out = out.squeeze()
return out
#returns the image as numpy, the ground truth and the prediction given model and input path
#affine = True, returns the affine transformation from loading the scan
def predict(img_path, model, num_labels, postfix, main_folder_path, eval_method, gpu0, useGPU,
stride = 50, patch_size = 70, test_augm = True, extra_patch = 30):
#read image
img = PP.numpyFromScan(img_path)
#read wmh
gt_path = img_path.replace('slices', 'gt_slices').replace('FLAIR', 'wmh').replace('/pre','')
gt, affine = PP.numpyFromScan(gt_path, get_affine = True, makebin = (num_labels == 2))
img = img.transpose((3,0,1,2))
img = img[np.newaxis, :]
gt = gt.transpose((3,0,1,2))
if eval_method == 0:
if useGPU:
out_v = model(Variable(torch.from_numpy(img).float(),volatile = True).cuda(gpu0))
else:
out_v = model(Variable(torch.from_numpy(img).float(),volatile = True))
out = out_v.data[0].cpu().numpy()
#FIX?
del out_v
out_v = Variable(torch.from_numpy(np.array([1])).float())
out_v = Variable(torch.from_numpy(np.array([1])).float())
elif eval_method == 1:
out = predictByPatches(img, model, num_labels, useGPU, gpu0, stride = stride, patch_size = patch_size, test_augm = test_augm, extra_patch = extra_patch)
out = out.squeeze()
#take argmax to get predictions
out = np.argmax(out, axis = 0)
#remove batch and label dimension
img = img.squeeze()
out = out.squeeze()
gt = gt.squeeze()
return img, gt, out, affine
def predictByPatches(img, model, num_labels, useGPU, gpu0, patch_size = 70, test_augm = False, stride = 50, extra_pad = 0, extra_patch = 30):
batch_num, num_channels, dim1, dim2, dim3 = img.shape
p_size = patch_size
#add padding to each dim s.t. % stride = 0
dim1_pad = (stride - ((dim1-p_size) % stride)) % stride
dim2_pad = (stride - ((dim2-p_size) % stride)) % stride
dim3_pad = (stride - ((dim3-p_size) % stride)) % stride
x_1_off, x_2_off = int(round(dim1_pad/2.0)), dim1_pad//2
y_1_off, y_2_off = int(round(dim2_pad/2.0)), dim2_pad//2
z_1_off, z_2_off = int(round(dim3_pad/2.0)), dim3_pad//2
img = np.lib.pad(img, ((0,0),(0,0), (x_1_off, x_2_off), (y_1_off, y_2_off), (z_1_off, z_2_off)), mode='minimum')
_, _, padded_dim1, padded_dim2, padded_dim3 = img.shape
out_shape = (img.shape[0], num_labels, img.shape[2], img.shape[3], img.shape[4])
out_total = np.zeros(out_shape)
out_counter = np.zeros(out_shape)
extra_p = extra_patch / 2
for i in range(0, padded_dim1 - p_size + 1, stride):
for j in range(0, padded_dim2 - p_size + 1, stride):
for k in range(0, padded_dim3 - p_size + 1, stride):
if extra_p != 0:
i_l, i_r = getExtraPatchOffsets(i, 0, padded_dim1 - p_size, extra_p)
j_l, j_r = getExtraPatchOffsets(j, 0, padded_dim2 - p_size, extra_p)
k_l, k_r = getExtraPatchOffsets(k, 0, padded_dim3 - p_size, extra_p)
img_patch = img[:,:, (i-i_l):(i+p_size+i_r),(j-j_l):(j+p_size+j_r),(k-k_l):(k+p_size+k_r)]
out_np = getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = extra_pad, test_augm = test_augm)
out_np = removePatchOffset(out_np, i_l, i_r, j_l, j_r, k_l, k_r)
out_total[:,:, i:i+p_size,j:j+p_size,k:k+p_size] += out_np
out_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
else:
img_patch = img[:, :, i:i+p_size, j:j+p_size, k:k+p_size]
#make a prediction on this image patch, adding extra padding during prediction and augmenting
#the result is of the same shape and size as the original img patch
out_np = getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = extra_pad, test_augm = test_augm)
out_total[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += out_np
out_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
out_total = out_total / out_counter
#remove padding from predictions
nb, c, i_size, j_size, k_size = out_total.shape
out_total = out_total[:, :, x_1_off:i_size-x_2_off, y_1_off:j_size-y_2_off, z_1_off:k_size-z_2_off]
return out_total
def getExtraPatchOffsets(v, low_bound, upper_bound, extra_p):
v_left = 0
v_right = 0
if v - extra_p > low_bound:
v_left = extra_p
if v + extra_p < upper_bound:
v_right = extra_p
return v_left, v_right
#list of tuple [(i_l, i_r), (j_l, j_r)]
def removePatchOffset(np_arr, i_l, i_r, j_l, j_r, k_l, k_r):
bn, c, s_i, s_j, s_k = np_arr.shape
return np_arr[:,:,(i_l):(s_i-i_r), (j_l):(s_j-j_r), (k_l):(s_k-k_r)]
def getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = 0, test_augm = False):
pd = extra_pad/2
padding = ((0,0), (0,0), (pd, pd), (pd, pd), (pd,pd))
img_patch = np.pad(img_patch, padding, 'constant')
num_augm = 1
if test_augm:
num_augm = 3
out_np_total = None
for i in range(num_augm):
img_patch_cp = np.copy(img_patch)
#AUGMENT IMAGE
if test_augm and i != 0:
pass
#apply augmentation
rot_x, rot_y, rot_z = AUG.getRotationVal([10,10,10])
zoom_val = AUG.getScalingVal(0.8, 1.1)
img_patch_cp = AUG.applyScale([img_patch_cp], zoom_val, [3])[0]
img_patch_cp = AUG.applyRotation([img_patch_cp], [rot_x, rot_y, rot_z], [3])[0]
#MAKE PREDICTION
if useGPU:
out = model(Variable(torch.from_numpy(img_patch_cp).float(),volatile = True).cuda(gpu0))
else:
out = model(Variable(torch.from_numpy(img_patch_cp).float(),volatile = True))
out_np = out.data[0].cpu().numpy()
#output is (1 x 3 x dim1 x dim2 x dim3)
out_np = out_np[np.newaxis,:]
if test_augm and i != 0:
temp = np.copy(out_np)
out_np = None
#reverse augmentation on predictions
rev_zoom_i = float(img_patch.shape[2]) / img_patch_cp.shape[2]
rev_zoom_j = float(img_patch.shape[3]) / img_patch_cp.shape[3]
rev_zoom_k = float(img_patch.shape[4]) / img_patch_cp.shape[4]
for j in range(temp.shape[1]):
r = AUG.applyRotation([temp[:,j:j+1,:,:,:]], [-rot_x, -rot_y, -rot_z], [3])[0]
r = AUG.applyScale(r, [rev_zoom_i,rev_zoom_j,rev_zoom_k], [3])[0]
if not isinstance(out_np, np.ndarray):
out_np = np.zeros([1, temp.shape[1], r.shape[2], r.shape[3], r.shape[4]])
out_np[:, j,:,:,:] = r
out_np = numpySoftmax(out_np, 1)
if not isinstance(out_np_total, np.ndarray):
if pd == 0:
out_np_total = out_np
else:
out_np_total = out_np[:,:,pd:-pd, pd:-pd, pd:-pd]
else:
if pd ==0:
out_np_total += out_np
else:
out_np_total += out_np[:,:,pd:-pd, pd:-pd, pd:-pd]
return out_np_total / num_augm
def numpySoftmax(x, axis_):
e_x = np.exp(x - np.max(x))
return e_x / (e_x.sum(axis=axis_) + 0.00001)