[f2ca4d]: / train.py

Download this file

420 lines (355 with data), 16.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import sys
sys.path.append('architectures/deeplab_3D/')
sys.path.append('architectures/unet_3D/')
sys.path.append('architectures/hrnet_3D/')
sys.path.append('architectures/experiment_nets_3D/')
sys.path.append('utils/')
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import scipy.misc
import os
from tqdm import *
import random
from random import randint
from docopt import docopt
import deeplab_resnet_3D
import unet_3D
import highresnet_3D
import exp_net_3D
import lossF
import PP
import augmentations as AUG
import nibabel as nib
import evalF as EF
import evalFP as EFP
docstr = """Write something here
Usage:
train.py [options]
Options:
-h, --help Print this message
--archId=<int> Architecture to run, 0 is DeepLab 3D, 1 is U-net3D, 2 is HRNet [default: 2]
--trainMethod=<int> 0 is full image, 1 is by patches (random), 2 is by patches (center pixel) [default: 1]
--lossFunction=<str> Loss function name. 'dice' option available [default: dice]
--imgSize=<str> Image size [default: 200x200x100]
--mainFolderPath=<str> Main folder path [default: ../Data/MS2017b/]
--patchSize=<int> Size of the patch [default: 60]
--patchSizeStage0=<int> Size of the patch at stage 0 [default: 41]
--namePostfix=<str> Postfix of flair. i.e. to use FLAIR_s postfix is _s. This also determines the train file [default: _200x200x100orig]
--modelPath=<str> Path of model to continue training on [default: none]
--NoLabels=<int> The number of different labels in training data, including background [default: 2]
--maxIter=<int> Maximum number of iterations [default: 20000]
--maxIterStage0=<int> Maximum number of iterations for stage 0 training [default: -1]
-i, --iterSize=<int> Num iters to accumulate gradients over [default: 1]
--lr=<float> Learning Rate [default: 0.0001]
--gpu0=<int> GPU number [default: 0]
--useGPU=<int> Use GPU or not [default: 0]
--experiment=<str> Specify experiment instead to run. e.g. 1x1x1x1x1x1_1_0 means 1 dilations all 6 blocks, with priv, no ASPP [default: None]
"""
args = docopt(docstr, version='v0.1')
print(args)
arch_id = int(args['--archId'])
train_method = int(args['--trainMethod'])
loss_name = args['--lossFunction']
img_dims = np.array(args['--imgSize'].split('x'), dtype=np.int64)
main_folder_path = args['--mainFolderPath']
patch_size = int(args['--patchSize'])
postfix = args['--namePostfix']
model_path = args['--modelPath']
num_labels = int(args['--NoLabels'])
max_iter = int(args['--maxIter'])
iter_size = int(args['--iterSize'])
base_lr = float(args['--lr'])
experiment = str(args['--experiment'])
gpu0 = int(args['--gpu0'])
useGPU = int(args['--useGPU'])
batch_size = 1
#img_dims = [197, 233, 189]
list_path = main_folder_path + 'train' + postfix + '.txt'
print('READING from ', list_path)
img_type_path = 'pre/FLAIR' + postfix + '.nii.gz'
gt_type_path = 'wmh' + postfix + '.nii.gz'
patch_size_stage0 = int(args['--patchSizeStage0'])
max_iter_stage0 = int(args['--maxIterStage0'])
iter_low = 1
iter_high = max_iter + 1
if model_path != 'none':
iter_low = int(model_path.split('iter_')[-1].replace('.pth','')) + 1
if iter_low >= iter_high:
print('Model already at ' + str(iter_low) + ' iterations. Change max iter size')
sys.exit()
num_labels2 = 209
#change to 0 to enable stage 0 patch learning
if num_labels == 2:
onlyLesions = True
else:
onlyLesions = False
if useGPU:
cudnn.enabled = True
else:
cudnn.enabled = False
if experiment != 'None':
snapshot_prefix = 'EXP3D' + '_' + experiment + '_' + loss_name + '_' + str(train_method)
else:
if arch_id == 0:
snapshot_prefix = 'DL3D_' + loss_name + '_' + str(train_method) + '_' + PP.getTime()
elif arch_id == 1:
snapshot_prefix = 'UNET3D_' + loss_name + '_' + str(train_method) + '_' + PP.getTime()
elif arch_id == 2:
snapshot_prefix = 'HR3D' + loss_name + '_' + str(train_method) + '_' + PP.getTime()
to_center_pixel = False
center_pixel_folder_path, locs_lesion, locs_other = (None, None, None)
if train_method == 2:
to_center_pixel = True
if not os.path.exists(os.path.join(main_folder_path, 'centerPixelPatches' + postfix + '_' + str(patch_size))):
print('Pixel patch folder does not exist')
sys.exit()
#load few files
img_list = PP.read_file(list_path)
results_folder = 'train_results/'
log_file_path = os.path.join(results_folder, 'logs', snapshot_prefix + '_log.txt')
model_file_path = os.path.join(results_folder, 'models', snapshot_prefix + '_best.pth')
logfile = open(log_file_path, 'w+')
info_run = "arch ID: {:d} | max iters: {:10d} | max iters stage 0 : {:10d} | train method : {} | lr : {}".format(arch_id, max_iter, max_iter_stage0, train_method, base_lr)
logfile.write(info_run + '\n')
logfile.flush()
def lr_poly(base_lr, iter,max_iter,power):
return base_lr*((1-float(iter)/max_iter)**(power))
def modelInit():
isPriv = False
if arch_id > 10:
isPriv = True
if experiment != 'None':
dilation_arr, isPriv, withASPP = PP.getExperimentInfo(experiment)
model = exp_net_3D.getExpNet(num_labels, dilation_arr, isPriv, NoLabels2 = num_labels2, withASPP = withASPP)
elif arch_id == 0:
model = deeplab_resnet_3D.Res_Deeplab(num_labels)
elif arch_id == 1:
model = unet_3D.UNet3D(1, num_labels)
elif arch_id == 2:
model = highresnet_3D.getHRNet(num_labels)
if model_path != 'none':
if useGPU:
#loading on GPU when model was saved on GPU
saved_state_dict = torch.load(model_path)
else:
#loading on CPU when model was saved on GPU
saved_state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(saved_state_dict)
model.float()
model.eval() # use_global_stats = True
return model, isPriv
def trainModel(model):
if useGPU:
model.cuda(gpu0)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr = base_lr)
optimizer.zero_grad()
print(model)
curr_val = 0
best_val = 0
val_change = False
loss_arr = np.zeros([iter_size])
loss_arr_i = 0
stage = 0
print('---------------')
print('STAGE ' + str(stage))
print('---------------')
for iter in range(iter_low, iter_high):
if iter > max_iter_stage0 and stage != 1:
print('---------------')
print('Stage 1')
print('---------------')
stage = 1
if train_method == 0:
img_b, label_b, _ = PP.extractImgBatch(batch_size, img_list, img_dims, onlyLesions,
main_folder_path = '../Data/MS2017b/')
elif train_method == 1 or train_method == 2:
if stage == 0:
batch_size = 1
img_b, label_b, _ = PP.extractPatchBatch(batch_size, patch_size_stage0, img_list, onlyLesions, center_pixel = to_center_pixel, main_folder_path = '../Data/MS2017b/', postfix=postfix)
else:
batch_size = 1
img_b, label_b, _ = PP.extractPatchBatch(batch_size, patch_size, img_list, onlyLesions, center_pixel = to_center_pixel, main_folder_path = '../Data/MS2017b/', postfix=postfix)
else:
print('Invalid training method format')
sys.exit()
if stage == 0:
img_b, label_b = AUG.augmentPatchLossLess([img_b, label_b])
img_b, label_b = AUG.augmentPatchLossy([img_b, label_b])
#img_b, label_b = AUG.augmentPatchLossless(img_b, label_b)
#img_b is of shape (batch_num) x 1 x dim1 x dim2 x dim3
#label_b is of shape (batch_num) x 1 x dim1 x dim2 x dim3
#batch_num should be 1 since too memory intensive
label_b = label_b.astype(np.int64)
#convert label from (batch_num x 1 x dim1 x dim2 x dim3)
# to ((batch_numxdim1*dim2*dim3) x 3) (one hot)
temp = label_b.reshape([-1])
label_b = np.zeros([temp.size, num_labels])
label_b[np.arange(temp.size),temp] = 1
label_b = torch.from_numpy(label_b).float()
imgs = torch.from_numpy(img_b).float()
if useGPU:
imgs, label_b = Variable(imgs).cuda(gpu0), Variable(label_b).cuda(gpu0)
else:
imgs, label_b = Variable(imgs), Variable(label_b)
#---------------------------------------------
#out size is (1, 3, dim1, dim2, dim3)
#---------------------------------------------
out = model(imgs)
out = out.permute(0,2,3,4,1).contiguous()
out = out.view(-1, num_labels)
#---------------------------------------------
#out size is (1 * dim1 * dim2 * dim3, 3)
#---------------------------------------------
#loss function
m = nn.Softmax()
loss = lossF.simple_dice_loss3D(m(out), label_b)
loss /= iter_size
loss.backward()
loss_val = loss.data.cpu().numpy()
loss_arr[loss_arr_i] = loss_val
loss_arr_i = (loss_arr_i + 1) % iter_size
if iter % 1 == 0:
if val_change:
print "iter = {:6d}/{:6d} Loss: {:1.6f} Val Score: {:1.6f} \r".format(iter-1, max_iter, float(loss_val)*iter_size, curr_val),
sys.stdout.flush()
print ""
val_change = False
print "iter = {:6d}/{:6d} Loss: {:1.6f} Val Score: {:1.6f} \r".format(iter, max_iter, float(loss_val)*iter_size, curr_val),
sys.stdout.flush()
if iter % 1000 == 0:
val_change = True
curr_val = EF.evalModelX(model, num_labels, postfix, main_folder_path, (train_method != 0), gpu0, useGPU, eval_metric = 'iou', patch_size = patch_size, extra_patch = 5)
if curr_val > best_val:
best_val = curr_val
print('\nSaving better model...')
torch.save(model.state_dict(), model_file_path)
logfile.write("iter = {:6d}/{:6d} Loss: {:1.6f} Val Score: {:1.6f} \n".format(iter, max_iter, np.sum(loss_arr), curr_val))
logfile.flush()
if iter % iter_size == 0:
optimizer.step()
optimizer.zero_grad()
del out, loss
def setupGIFVar(gif_b):
gif_b = gif_b.astype(np.int64)
gif_b = gif_b.reshape([-1])
gif_b = torch.from_numpy(gif_b).long()
if useGPU:
gif_b = Variable(gif_b).cuda(gpu0)
else:
gif_b = Variable(gif_b)
return gif_b
def trainModelPriv(model):
if useGPU:
model.cuda(gpu0)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr = base_lr)
optimizer.zero_grad()
print(model)
curr_val1 = 0
curr_val2 = 0
best_val2 = 0
val_change = False
loss_arr1 = np.zeros([iter_size])
loss_arr2 = np.zeros([iter_size])
loss_arr_i = 0
stage = 0
print('---------------')
print('STAGE ' + str(stage))
print('---------------')
for iter in range(iter_low, iter_high):
if iter > max_iter_stage0 and stage != 1:
print('---------------')
print('Stage 1')
print('---------------')
stage = 1
if train_method == 0:
img_b, label_b, gif_b = PP.extractImgBatch(batch_size, img_list, img_dims, onlyLesions,
main_folder_path = '../Data/MS2017b/', with_priv = True)
elif train_method == 1 or train_method == 2:
if stage == 0:
batch_size = 5
img_b, label_b, gif_b = PP.extractPatchBatch(batch_size, patch_size_stage0, img_list, onlyLesions,
center_pixel = to_center_pixel,
main_folder_path = '../Data/MS2017b/',
postfix=postfix, with_priv= True)
else:
batch_size = 1
img_b, label_b, gif_b = PP.extractPatchBatch(batch_size, patch_size, img_list, onlyLesions,
center_pixel = to_center_pixel,
main_folder_path = '../Data/MS2017b/',
postfix=postfix, with_priv= True)
else:
print('Invalid training method format')
sys.exit()
img_b, label_b, gif_b = AUG.augmentPatchLossy([img_b, label_b, gif_b])
#img_b is of shape (batch_num) x 1 x dim1 x dim2 x dim3
#label_b is of shape (batch_num) x 1 x dim1 x dim2 x dim3
label_b = label_b.astype(np.int64)
#convert label from (batch_num x 1 x dim1 x dim2 x dim3)
# to ((batch_numxdim1*dim2*dim3) x 3) (one hot)
temp = label_b.reshape([-1])
label_b = np.zeros([temp.size, num_labels])
label_b[np.arange(temp.size),temp] = 1
label_b = torch.from_numpy(label_b).float()
imgs = torch.from_numpy(img_b).float()
if useGPU:
imgs, label_b = Variable(imgs).cuda(gpu0), Variable(label_b).cuda(gpu0)
else:
imgs, label_b = Variable(imgs), Variable(label_b)
gif_b = setupGIFVar(gif_b)
#---------------------------------------------
#out size is (1, 3, dim1, dim2, dim3)
#---------------------------------------------
#out1 is extra info
out1, out2 = model(imgs)
out1 = out1.permute(0,2,3,4,1).contiguous()
out1 = out1.view(-1, num_labels2)
out2 = out2.permute(0,2,3,4,1).contiguous()
out2 = out2.view(-1, num_labels)
#---------------------------------------------
#out size is (1 * dim1 * dim2 * dim3, 3)
#---------------------------------------------
m2 = nn.Softmax()
loss2 = lossF.simple_dice_loss3D(m2(out2), label_b)
m1 = nn.LogSoftmax()
loss1 = F.nll_loss(m1(out1), gif_b)
loss1 /= iter_size
loss2 /= iter_size
torch.autograd.backward([loss1, loss2])
loss_val1 = float(loss1.data.cpu().numpy())
loss_arr1[loss_arr_i] = loss_val1
loss_val2 = float(loss2.data.cpu().numpy())
loss_arr2[loss_arr_i] = loss_val2
loss_arr_i = (loss_arr_i + 1) % iter_size
if iter % 1 == 0:
if val_change:
print "iter = {:6d}/{:6d} Loss_main: {:1.6f} Loss_secondary: {:1.6f} Val Score: {:1.6f} Val Score secondary: {:1.6f} \r".format(iter-1, max_iter, loss_val2*iter_size, loss_val1*iter_size, curr_val2, curr_val1),
sys.stdout.flush()
print ""
val_change = False
print "iter = {:6d}/{:6d} Loss_main: {:1.6f} Loss_secondary: {:1.6f} Val Score main: {:1.6f} Val Score secondary: {:1.6f} \r".format(iter, max_iter, loss_val2*iter_size, loss_val1*iter_size, curr_val2, curr_val1),
sys.stdout.flush()
if iter % 2000 == 0:
val_change = True
curr_val1, curr_val2 = EFP.evalModelX(model, num_labels, num_labels2, postfix, main_folder_path, (train_method != 0), gpu0, useGPU, eval_metric = 'iou', patch_size = patch_size, extra_patch = 5, priv_eval = True)
if curr_val2 > best_val2:
best_val2 = curr_val2
torch.save(model.state_dict(), model_file_path)
print('\nSaving better model...')
logfile.write("iter = {:6d}/{:6d} Loss_main: {:1.6f} Loss_secondary: {:1.6f} Val Score main: {:1.6f} Val Score secondary: {:1.6f} \n".format(iter, max_iter, np.sum(loss_arr2), np.sum(loss_arr1), curr_val2, curr_val1))
logfile.flush()
if iter % iter_size == 0:
optimizer.step()
optimizer.zero_grad()
del out1, out2, loss1, loss2
if __name__ == "__main__":
model, with_priv = modelInit()
if with_priv:
trainModelPriv(model)
else:
trainModel(model)
logfile.close()