[f2ca4d]: / test.py

Download this file

142 lines (122 with data), 4.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import sys
import os
import glob
import nibabel as nib
import torch
#docker
#fpx = '/wmhseg_code/'
#inputDir = '/input'
#outputDir = '/output'
#local
main_folder_path = '../Data/MS2017b/'
fpx = './'
inputDir = 'input/'
outputDir = 'output/'
#PARAMS
useGPU = 0
gpu0 = 0
patch_size = 60
extra_patch = 5
model_paths = [fpx + 'analysis/models/EXP3D_1x1x1x1_0_0_dice_1_best.pth']
weights = [1]
#EXP3D_1x1x1x1_0_0_dice_1_best.pth
#EXP3D_2x2x2x2_0_0_dice_1_best.pth
#EXP3D_1x1x1x1_0_1_dice_1_best.pth
#EXP3D_1x1x1x1_1_1_dice_1_best.pth
##EXP3D_1x1x1x1_0_1_dice_1_best.pth (with ep = 16)
sys.path.append(fpx + 'utils/')
sys.path.append(fpx + 'architectures/deeplab_3D/')
sys.path.append(fpx + 'architectures/unet_3D/')
sys.path.append(fpx + 'architectures/hrnet_3D/')
sys.path.append(fpx + 'architectures/experiment_nets_3D/')
sys.path.append('utils/')
import deeplab_resnet_3D
import unet_3D
import highresnet_3D
import exp_net_3D
import augmentations as AUG
import normalizations as NORM
import resizeScans as RS
import evalF as EF
import evalFP as EFP
import PP
import torch
#step 1: read image from input folder
#step 2: resize image to 200x200x100 + apply normalizations
#step 3: make prediction by patches (with augmentations)
#step 4: save prediction to output folder
#step 5: resize prediction back to original size of image
img_path = os.path.join(inputDir, 'FLAIR.nii.gz')
img_path_rs = os.path.join(outputDir, 'FLAIR_rs.nii.gz')
wmh_path_rs = os.path.join(outputDir, 'wmh_rs.nii.gz')
wmh_path = os.path.join(outputDir, 'result.nii.gz')
old_size = PP.numpyFromScan(img_path).shape
new_size = [200,200,100]
num_labels = 2
#convert scan to 200x200x100
RS.convertSize2(img_path, img_path_rs, new_size)
#get the affine value
affine_rs = nib.load(img_path_rs).get_affine()
#normalize using histogram and variance normalization
RS.normalizeScan(img_path_rs, img_path_rs, main_folder_path=main_folder_path)
#read preprocessed img
img, affine = PP.numpyFromScan(img_path_rs, get_affine = True)
img = img.transpose((3,0,1,2))
img = img[np.newaxis, :]
print('Image ready')
print('Loading model')
out = None
for i, model_path in enumerate(model_paths):
f_name = model_path.split('/')[-1]
isPriv = False
#load model
if 'EXP3D' in f_name:
experiment = f_name.replace('EXP3D_', '').replace('.pth', '').split('_')
experiment = '_'.join(experiment[0:3])
dilation_arr, isPriv, withASPP = PP.getExperimentInfo(experiment)
model = exp_net_3D.getExpNet(num_labels, dilation_arr, isPriv, NoLabels2 = 209, withASPP = withASPP)
elif 'HR3D' in f_name:
model = highresnet_3D.getHRNet(num_labels)
elif 'DL3D' in f_name:
model = deeplab_resnet_3D.Res_Deeplab(num_labels)
elif 'UNET3D' in f_name:
model = unet_3D.UNet3D(1, num_labels)
else:
print('No model available for this .pth')
sys.exit()
if useGPU:
saved_state_dict = torch.load(model_path)
else:
saved_state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(saved_state_dict)
model.float()
model.eval()
print('Model ready')
print('Predicting...')
if not isinstance(out, np.ndarray):
if isPriv:
out = EFP.testPredict(img, model, num_labels, 209, 1, gpu0, useGPU, stride = 50, patch_size = 60, test_augm = False, extra_patch = extra_patch, get_soft = True)
else:
out = EF.testPredict(img, model, num_labels, 1, gpu0, useGPU, stride = 50, patch_size = 60, test_augm = False, extra_patch = extra_patch, get_soft = True)
else:
if isPriv:
out += EFP.testPredict(img, model, num_labels, 209, 1, gpu0, useGPU, stride = 50, patch_size = 60, test_augm = False, extra_patch = extra_patch, get_soft = True)
else:
out += EF.testPredict(img, model, num_labels, 1, gpu0, useGPU, stride = 50, patch_size = 60, test_augm = False, extra_patch = extra_patch, get_soft = True)
out /= float(len(model_paths))
out = np.argmax(out, axis = 0)
#remove batch and label dimension
out = out.squeeze()
print('Prediction complete')
print('Saving...')
#save output
PP.saveScan(out.astype(np.float64), affine_rs, wmh_path_rs)
#resize output to original input size and save (this is our final result)
d = RS.convertSize2(wmh_path_rs, wmh_path, old_size, interpolation = 'nearest')
#read the image and save it with same affine and header as original FLAIR image
print('Saving final wmh file')
orig_flair = nib.load(img_path)
wmh_final = nib.load(wmh_path).get_data()
PP.saveScan(wmh_final, orig_flair.get_affine(), wmh_path, header =orig_flair.header)
print('Done')