[f2ca4d]: / architectures / hrnet_3D / smallhighresnet_3D.py

Download this file

125 lines (103 with data), 4.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import numpy as np
import sys
import torch.nn.init as init
affine_par = True
class HighResNetBlock(nn.Module):
def __init__(self, inplanes, outplanes, padding_=1, stride=1, dilation_ = 1):
super(HighResNetBlock, self).__init__()
self.conv1 = nn.Conv3d(inplanes, outplanes, kernel_size=3, stride=1,
padding=padding_, bias=False, dilation = dilation_)
self.conv2 = nn.Conv3d(outplanes, outplanes, kernel_size=3, stride=1,
padding=padding_, bias=False, dilation = dilation_)
#2 convolutions of same dilation. residual block
self.bn1 = nn.BatchNorm3d(outplanes, affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.bn2 = nn.BatchNorm3d(outplanes, affine = affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.relu = nn.PReLU()
self.diff_dims = (inplanes != outplanes)
self.downsample = nn.Sequential(
nn.Conv3d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm3d(outplanes, affine = affine_par)
)
for i in self.downsample._modules['1'].parameters():
i.requires_grad = False
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.diff_dims:
residual = self.downsample(residual)
out += residual
out = self.relu(out)
return out
class SmallHighResNet(nn.Module):
def __init__(self,NoLabels):
super(SmallHighResNet,self).__init__()
self.conv1 = nn.Conv3d(1, 8, kernel_size=3, stride=8, padding=1, bias=False)
self.bn1 = nn.BatchNorm3d(8, affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.relu = nn.PReLU()
self.block1_1 = HighResNetBlock(inplanes=8, outplanes=8, padding_=1, dilation_=1)
self.block2_1 = HighResNetBlock(inplanes=8, outplanes=16,padding_=2, dilation_=2)
self.block2_2 = HighResNetBlock(inplanes=16, outplanes=16, padding_=2, dilation_=2)
self.block3_1 = HighResNetBlock(inplanes=16, outplanes=16, padding_=4, dilation_=4)
self.block3_2 = HighResNetBlock(inplanes=16, outplanes=16, padding_=4, dilation_=4)
self.conv2 = nn.Conv3d(16, NoLabels, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self,x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
#print('A', out.size())
#res blocks (dilation = 1)
out = self.block1_1(out)
#print('B', out.size())
out = self.block1_1(out)
#print('C', out.size())
out = self.block1_1(out)
#print('D', out.size())
#res blocks (dilation = 2)
out = self.block2_1(out)
#print('E', out.size())
out = self.block2_2(out)
#print('F', out.size())
out = self.block2_2(out)
#print('G', out.size())
#res blocks (dilation = 4)
out = self.block3_1(out)
#print('H', out.size())
out = self.block3_2(out)
#print('I', out.size())
out = self.block3_2(out)
#print('J', out.size())
out = self.conv2(out)
s0 = x.size()[2]
s1 = x.size()[3]
s2 = x.size()[4]
self.interp = nn.Upsample(size = (s0, s1, s2), mode='trilinear')
out = self.interp(out)
#print('K', out.size())
return out
def getSmallHRNet(NoLabels=3):
model = SmallHighResNet(NoLabels)
for m in model.modules():
if isinstance(m,nn.Conv3d):
init.kaiming_uniform(m.weight)
elif isinstance(m, nn.Sequential):
for m_1 in m.modules():
if isinstance(m_1, nn.Conv3d):
init.kaiming_uniform(m_1.weight)
return model
#or m in net.modules():
#m.weight.data.fill_(1)
#m.bias.data.fill_(0)