[f2ca4d]: / utils / evalFP.py

Download this file

235 lines (196 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import sys
import os
import evalMetrics as METRICS
import PP
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import augmentations as AUG
#---------------------------------------------
#Evaluation functions for PrivCNNs
#---------------------------------------------
def evalModelX(model, num_labels, num_labels2, postfix, main_folder_path, eval_method, gpu0, useGPU,
patch_size = 70, eval_metric = 'iou', test_augm = False, extra_patch = 30, priv_eval = True):
eval_list = main_folder_path + 'val' + postfix + '.txt'
img_list = open(eval_list).readlines()
v = 0
v_priv = 0
for img_str in img_list:
img_str = img_str.rstrip()
_, gt1, out1, gt2, out2, _ = predict(os.path.join(main_folder_path, img_str), model, num_labels, num_labels2,
postfix, main_folder_path, eval_method, gpu0, useGPU, patch_size=patch_size,
test_augm = test_augm, extra_patch = extra_patch, priv_eval = priv_eval)
v += METRICS.metricEval(eval_metric, out2, gt2, num_labels)
v_priv += METRICS.metricEval(eval_metric, out1, gt1, num_labels2)
return v_priv / len(img_list), v / len(img_list)
def testPredict(img, model, num_labels, num_labels2, eval_method, gpu0, useGPU, stride = 50, patch_size = 70, test_augm = True, extra_patch = 30, get_soft = False):
if eval_method == 0:
if useGPU:
_, out = model(Variable(torch.from_numpy(img).float(),volatile = True).cuda(gpu0))
else:
_, out = model(Variable(torch.from_numpy(img).float(),volatile = True))
out = out.data[0].cpu().numpy()
elif eval_method == 1:
_, out = predictByPatches(img, model, num_labels, num_labels2, useGPU, gpu0,
stride = stride, patch_size = patch_size,
test_augm = test_augm, extra_patch = extra_patch, priv_eval = False)
out = out.squeeze()
if get_soft:
return out
#take argmax to get predictions
out = np.argmax(out, axis = 0)
#remove batch and label dimension
out = out.squeeze()
return out
#returns the image as numpy, the ground truth and the prediction given model and input path
#affine = True, returns the affine transformation from loading the scan
def predict(img_path, model, num_labels, num_labels2, postfix, main_folder_path, eval_method, gpu0, useGPU,
stride = 50, patch_size = 70, test_augm = True, extra_patch = 30, priv_eval = True):
#read image
img = PP.numpyFromScan(img_path)
#read wmh
gt_path = img_path.replace('slices', 'gt_slices').replace('FLAIR', 'wmh').replace('/pre','')
gt, affine = PP.numpyFromScan(gt_path, get_affine = True, makebin = (num_labels == 2))
gif_path = img_path.replace('scans', 'gifs').replace('FLAIR', 'parcellation').replace('/pre','')
gif = PP.numpyFromScan(gif_path)
img = img.transpose((3,0,1,2))
img = img[np.newaxis, :]
gt = gt.transpose((3,0,1,2))
gif = gif.transpose((3,0,1,2))
if eval_method == 0:
if useGPU:
out1_v, out2_v = model(Variable(torch.from_numpy(img).float(),volatile=True).cuda(gpu0))
else:
out1_v, out2_v = model(Variable(torch.from_numpy(img).float(),volatile=True))
out1 = out1_v.data[0].cpu().numpy()
out2 = out2_v.data[0].cpu().numpy()
del out1_v, out2_v
elif eval_method == 1:
out1, out2 = predictByPatches(img, model, num_labels, num_labels2, useGPU, gpu0,
stride = stride, test_augm = test_augm, patch_size = patch_size,
extra_patch = extra_patch, priv_eval = priv_eval)
out1 = out1.squeeze()
out1 = np.argmax(out1, axis = 0)
out1 = out1.squeeze()
out2 = out2.squeeze()
out2 = np.argmax(out2, axis = 0)
out2 = out2.squeeze()
#remove batch and label dimension
img = img.squeeze()
return img, gif, out1, gt, out2, affine
def predictByPatches(img, model, num_labels, num_labels2, useGPU, gpu0, patch_size = 70, test_augm = False, stride = 50, extra_pad = 0, extra_patch = 30, priv_eval = True):
batch_num, num_channels, dim1, dim2, dim3 = img.shape
p_size = patch_size
#add padding to each dim s.t. % stride = 0
dim1_pad = stride - ((dim1-p_size) % stride)
dim2_pad = stride - ((dim2-p_size) % stride)
dim3_pad = stride - ((dim3-p_size) % stride)
x_1_off, x_2_off = int(round(dim1_pad/2.0)), dim1_pad//2
y_1_off, y_2_off = int(round(dim2_pad/2.0)), dim2_pad//2
z_1_off, z_2_off = int(round(dim3_pad/2.0)), dim3_pad//2
img = np.lib.pad(img, ((0,0),(0,0), (x_1_off, x_2_off), (y_1_off, y_2_off), (z_1_off, z_2_off)), mode='minimum')
_, _, padded_dim1, padded_dim2, padded_dim3 = img.shape
out2_shape = (img.shape[0], num_labels, img.shape[2], img.shape[3], img.shape[4])
out1_shape = (img.shape[0], num_labels2, img.shape[2], img.shape[3], img.shape[4])
out1_total = np.zeros(out1_shape, dtype=np.float16)
out1_counter = np.zeros(out1_shape, dtype=np.int8)
out2_total = np.zeros(out2_shape)
out2_counter = np.zeros(out2_shape)
extra_p = extra_patch / 2
for i in range(0, padded_dim1 - p_size + 1, stride):
for j in range(0, padded_dim2 - p_size + 1, stride):
for k in range(0, padded_dim3 - p_size + 1, stride):
if extra_p != 0:
i_l, i_r = getExtraPatchOffsets(i, 0, padded_dim1 - p_size, extra_p)
j_l, j_r = getExtraPatchOffsets(j, 0, padded_dim2 - p_size, extra_p)
k_l, k_r = getExtraPatchOffsets(k, 0, padded_dim3 - p_size, extra_p)
img_patch = img[:,:, (i-i_l):(i+p_size+i_r),(j-j_l):(j+p_size+j_r),(k-k_l):(k+p_size+k_r)]
out1_np, out2_np = getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = extra_pad, test_augm = test_augm)
out1_np = removePatchOffset(out1_np, i_l, i_r, j_l, j_r, k_l, k_r)
out2_np = removePatchOffset(out2_np, i_l, i_r, j_l, j_r, k_l, k_r)
if priv_eval:
out1_total[:,:, i:i+p_size,j:j+p_size,k:k+p_size] += out1_np
out1_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
out2_total[:,:, i:i+p_size,j:j+p_size,k:k+p_size] += out2_np
out2_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
else:
img_patch = img[:, :, i:i+p_size, j:j+p_size, k:k+p_size]
#make a prediction on this image patch, adding extra padding during prediction and augmenting
#the result is of the same shape and size as the original img patch
out1_np, out2_np = getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = extra_pad, test_augm = test_augm)
#too memory intensive
if priv_eval:
out1_total[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += out1_np.astype(np.float16)
out1_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
out2_total[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += out2_np
out2_counter[:, :, i:i+p_size, j:j+p_size, k:k+p_size] += 1
if priv_eval:
out1_total = out1_total / out1_counter
out2_total = out2_total / out2_counter
#remove padding from predictions
out1_total = out1_total[:, :, x_1_off:-x_2_off, y_1_off:-y_2_off, z_1_off:-z_2_off]
out2_total = out2_total[:, :, x_1_off:-x_2_off, y_1_off:-y_2_off, z_1_off:-z_2_off]
return out1_total, out2_total
def getExtraPatchOffsets(v, low_bound, upper_bound, extra_p):
v_left = 0
v_right = 0
if v - extra_p > low_bound:
v_left = extra_p
if v + extra_p < upper_bound:
v_right = extra_p
return v_left, v_right
#list of tuple [(i_l, i_r), (j_l, j_r)]
def removePatchOffset(np_arr, i_l, i_r, j_l, j_r, k_l, k_r):
bn, c, s_i, s_j, s_k = np_arr.shape
return np_arr[:,:,(i_l):(s_i-i_r), (j_l):(s_j-j_r), (k_l):(s_k-k_r)]
def getPatchPrediction(img_patch, model, useGPU, gpu0, extra_pad = 10, test_augm = False):
pd = extra_pad/2
padding = ((0,0), (0,0), (pd, pd), (pd, pd), (pd,pd))
img_patch = np.pad(img_patch, padding, 'constant')
num_augm = 1
if test_augm:
num_augm = 3
out1_np_total = None
out2_np_total = None
for i in range(num_augm):
img_patch_cp = np.copy(img_patch)
if test_augm and i != 0:
#apply augmentation
rot_x, rot_y, rot_z = AUG.getRotationVal([10,10,10])
zoom_val = AUG.getScalingVal(0.9, 1.1)
img_patch_cp = AUG.applyScale([img_patch_cp], zoom_val, [3])[0]
img_patch_cp = AUG.applyRotation([img_patch_cp], [rot_x, rot_y, rot_z], [3])[0]
if useGPU:
out1, out2 = model(Variable(torch.from_numpy(img_patch_cp).float(),volatile=True).cuda(gpu0))
else:
out1, out2 = model(Variable(torch.from_numpy(img_patch_cp).float(),volatile=True))
out1_np = out1.data[0].cpu().numpy()
out2_np = out2.data[0].cpu().numpy()
del out1, out2
#output is (1 x 3 x dim1 x dim2 x dim3)
out1_np = out1_np[np.newaxis,:]
out2_np = out2_np[np.newaxis,:]
if test_augm and i != 0:
temp2 = np.copy(out2_np)
out2_np = None
rev_zoom_i = float(img_patch.shape[2]) / img_patch_cp.shape[2]
rev_zoom_j = float(img_patch.shape[3]) / img_patch_cp.shape[3]
rev_zoom_k = float(img_patch.shape[4]) / img_patch_cp.shape[4]
for j in range(temp2.shape[1]):
r2 = AUG.applyRotation([temp2[:,j:j+1,:,:,:]], [-rot_x, -rot_y, -rot_z], [3])[0]
r2 = AUG.applyScale([r2], [rev_zoom_i,rev_zoom_j,rev_zoom_k], [3])[0]
if not isinstance(out2_np, np.ndarray):
out2_np = np.zeros([1, temp2.shape[1], r2.shape[2], r2.shape[3], r2.shape[4]])
out2_np[:, j,:,:,:] = r2
out2_np = numpySoftmax(out2_np, 1)
nb, c, n_i, n_j, n_k = out2_np.shape
if not isinstance(out1_np_total, np.ndarray):
out1_np_total = out1_np[:,:,(pd):(n_i-pd),(pd):(n_j-pd),(pd):(n_k-pd)]
out2_np_total = out2_np[:,:,(pd):(n_i-pd),(pd):(n_j-pd),(pd):(n_k-pd)]
else:
out2_np_total += out2_np[:,:,(pd):(n_i-pd),(pd):(n_j-pd),(pd):(n_k-pd)]
return (out1_np_total), (out2_np_total / num_augm)
def numpySoftmax(x, axis_):
e_x = np.exp(x - np.max(x))
return e_x / (e_x.sum(axis=axis_) + 0.00001)