[f2ca4d]: / architectures / deeplab_3D / deeplab_resnet_3D.py

Download this file

266 lines (218 with data), 9.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import numpy as np
affine_par = True
def outS(i):
i = int(i)
i = (i+1)/2
i = int(np.ceil((i+1)/2.0))
i = (i+1)/2
i = int(np.ceil((i+1)/2.0))
return i
def conv3x3(in_planes, out_planes, stride=1):
"3x3x3 convolution with padding"
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
'''
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes, affine = affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes, affine = affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
'''
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
self.bn1 = nn.BatchNorm3d(planes, affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = dilation_
#if dilation_ == 2:
# padding = 2
#elif dilation_ == 4:
# padding = 4
self.conv2 = nn.Conv3d(planes, planes, kernel_size=3, stride=1, padding=padding, bias=False, dilation = dilation_)
self.bn2 = nn.BatchNorm3d(planes,affine = affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm3d(planes * 4, affine = affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self,dilation_series,padding_series,NoLabels):
super(Classifier_Module, self).__init__()
self.conv3d_list = nn.ModuleList()
self.bn3d_list = nn.ModuleList()
for dilation,padding in zip(dilation_series,padding_series):
self.conv3d_list.append(nn.Conv3d(2048, 256,kernel_size=3,stride=1, padding =padding, dilation = dilation,bias = True))
self.bn3d_list.append(nn.BatchNorm3d(256, affine = affine_par))
self.num_concats = len(self.conv3d_list) + 2
#add global pooling, add batchnorm
self.conv1x1_1 = nn.Conv3d(2048, 256, kernel_size=1, stride=1)
self.conv1x1_2 = nn.Conv3d(2048, 256, kernel_size=1, stride=1)
self.conv1x1_3 = nn.Conv3d(256*self.num_concats, 256, kernel_size=1, stride=1)
self.conv1x1_4 = nn.Conv3d(256, NoLabels, kernel_size=1, stride=1)
self.bn1 = nn.BatchNorm3d(256, affine = affine_par)
self.bn2 = nn.BatchNorm3d(256*self.num_concats, affine= affine_par)
self.bn3 = nn.BatchNorm3d(256, affine= affine_par)
#global avg pool
#input = 1x512xdim1xdim2xdim3
#output = 1x512x1x1x1
#XXX check
for m in self.conv3d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.bn3d_list[0](self.conv3d_list[0](x))
#concatenate multiple atrous rates
for i in range(len(self.conv3d_list)-1):
#XXX add batch norm?
out = torch.cat([out, self.bn3d_list[i+1](self.conv3d_list[i+1](x))], 1)
#concatenate global avg pooling (avg global pool -> 1x1 conv (256 filter) -> batchnorm -> interpolate -> concat)
self.glob_avg_pool = nn.AvgPool3d(kernel_size=(x.size()[2],x.size()[3],x.size()[4]))
self.iterp_orig = nn.Upsample(size = (out.size()[2], out.size()[3], out.size()[4]), mode= 'trilinear')
out = torch.cat([out, self.iterp_orig(self.bn1(self.conv1x1_1(self.glob_avg_pool(x))))], 1)
#concatenate 1x1 convolution
out = torch.cat([out, self.conv1x1_2(x)], 1)
#apply batch norm on concatenated output
out = self.bn2(out)
#apply 1x1 convolution to get back to 256 filters
out = self.conv1x1_3(out)
#apply last batch norm
out = self.bn3(out)
#apply 1x1 convolution to get last labels
out = self.conv1x1_4(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers,NoLabels):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv3d(1, 64, kernel_size=3, stride=2, padding=1, bias=False) # / 2
self.bn1 = nn.BatchNorm3d(64,affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # / 4
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=1) # / 8
self.layer3 = self._make_layer(block, 256, layers[2], stride=1) # / 16
self.layer4_0 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 2)
self.layer4_1 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 4)
self.layer4_2 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 8)
self.layer4_3 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 16)
self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],NoLabels)
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
for i in m.parameters():
i.requires_grad = False
def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4:
downsample = nn.Sequential(
nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm3d(planes * block.expansion,affine = affine_par),
)
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride, dilation_=dilation__, downsample = downsample ))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,dilation_=dilation__))
return nn.Sequential(*layers)
def _make_pred_layer(self,block, dilation_series, padding_series,NoLabels):
return block(dilation_series,padding_series,NoLabels)
def forward(self, x):
#print('A - x', x.size())
x = self.conv1(x)
#print('B - conv1', x.size())
x = self.bn1(x)
#print('C - bn1', x.size())
x = self.relu(x)
#print('D - relu', x.size())
x = self.maxpool(x)
#print('E - maxpool', x.size())
x = self.layer1(x)
#print('F - layer1', x.size())
x = self.layer2(x)
#print('G - layer2', x.size())
x = self.layer3(x)
#print('H - layer3', x.size())
x = self.layer4_0(x)
#print('I - layer4_0', x.size())
x = self.layer4_1(x)
#print('J - layer4_1', x.size())
x = self.layer4_2(x)
#print('K - layer4_2', x.size())
x = self.layer4_3(x)
#print('L - layer4_3', x.size())
x = self.layer5(x)
#print('M - layer5 (classification)', x.size())
return x
#
class MS_Deeplab(nn.Module):
def __init__(self,block,NoLabels):
super(MS_Deeplab,self).__init__()
self.Scale = ResNet(block,[3, 4, 23, 3], NoLabels)
def forward(self,x):
s0 = x.size()[2]
s1 = x.size()[3]
s2 = x.size()[4]
#self.interp3 = nn.Upsample(size = ( outS(s0), outS(s1), outS(s2) ), mode= 'nearest')
self.interp = nn.Upsample(size = (s0, s1, s2), mode='trilinear')
out = self.interp(self.Scale(x))
#out = []
#add 1x1 convolution
#add ASPP (6, 12, 18 dilations)
#add avg max pooling with 1x1 conv
#print('N - upsample', out.size())
#out.append(self.Scale(x))
return out
def Res_Deeplab(NoLabels=3):
model = MS_Deeplab(Bottleneck,NoLabels)
return model