|
a |
|
b/unet.py |
|
|
1 |
""" |
|
|
2 |
This code is to build and train 2D U-Net |
|
|
3 |
""" |
|
|
4 |
import numpy as np |
|
|
5 |
import sys |
|
|
6 |
import subprocess |
|
|
7 |
import argparse |
|
|
8 |
import os |
|
|
9 |
|
|
|
10 |
from keras.models import Model |
|
|
11 |
from keras.layers import Input, Activation, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, ZeroPadding2D, add |
|
|
12 |
from keras.optimizers import Adam, SGD |
|
|
13 |
from keras.callbacks import ModelCheckpoint, CSVLogger |
|
|
14 |
from keras import backend as K |
|
|
15 |
from keras import losses |
|
|
16 |
|
|
|
17 |
import tensorflow as tf |
|
|
18 |
import matplotlib.pyplot as plt |
|
|
19 |
import pandas as pd |
|
|
20 |
import csv |
|
|
21 |
|
|
|
22 |
from utils import * |
|
|
23 |
from data import load_train_data |
|
|
24 |
|
|
|
25 |
K.set_image_data_format('channels_last') # Tensorflow dimension ordering |
|
|
26 |
|
|
|
27 |
# ----- paths setting ----- |
|
|
28 |
data_path = sys.argv[1] + "/" |
|
|
29 |
model_path = data_path + "models/" |
|
|
30 |
log_path = data_path + "logs/" |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
# ----- params for training and testing ----- |
|
|
34 |
batch_size = 1 |
|
|
35 |
cur_fold = sys.argv[2] |
|
|
36 |
plane = sys.argv[3] |
|
|
37 |
epoch = int(sys.argv[4]) |
|
|
38 |
init_lr = float(sys.argv[5]) |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
# ----- Dice Coefficient and cost function for training ----- |
|
|
42 |
smooth = 1. |
|
|
43 |
|
|
|
44 |
def dice_coef(y_true, y_pred): |
|
|
45 |
y_true_f = K.flatten(y_true) |
|
|
46 |
y_pred_f = K.flatten(y_pred) |
|
|
47 |
intersection = K.sum(y_true_f * y_pred_f) |
|
|
48 |
return (2.0 * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) |
|
|
49 |
|
|
|
50 |
def dice_coef_loss(y_true, y_pred): |
|
|
51 |
return -dice_coef(y_true, y_pred) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
def get_unet((img_rows, img_cols), flt=64, pool_size=(2, 2, 2), init_lr=1.0e-5): |
|
|
55 |
"""build and compile Neural Network""" |
|
|
56 |
|
|
|
57 |
print "start building NN" |
|
|
58 |
inputs = Input((img_rows, img_cols, 1)) |
|
|
59 |
|
|
|
60 |
conv1 = Conv2D(flt, (3, 3), activation='relu', padding='same')(inputs) |
|
|
61 |
conv1 = Conv2D(flt, (3, 3), activation='relu', padding='same')(conv1) |
|
|
62 |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) |
|
|
63 |
|
|
|
64 |
conv2 = Conv2D(flt*2, (3, 3), activation='relu', padding='same')(pool1) |
|
|
65 |
conv2 = Conv2D(flt*2, (3, 3), activation='relu', padding='same')(conv2) |
|
|
66 |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) |
|
|
67 |
|
|
|
68 |
conv3 = Conv2D(flt*4, (3, 3), activation='relu', padding='same')(pool2) |
|
|
69 |
conv3 = Conv2D(flt*4, (3, 3), activation='relu', padding='same')(conv3) |
|
|
70 |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) |
|
|
71 |
|
|
|
72 |
conv4 = Conv2D(flt*8, (3, 3), activation='relu', padding='same')(pool3) |
|
|
73 |
conv4 = Conv2D(flt*8, (3, 3), activation='relu', padding='same')(conv4) |
|
|
74 |
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) |
|
|
75 |
|
|
|
76 |
conv5 = Conv2D(flt*16, (3, 3), activation='relu', padding='same')(pool4) |
|
|
77 |
conv5 = Conv2D(flt*8, (3, 3), activation='relu', padding='same')(conv5) |
|
|
78 |
|
|
|
79 |
up6 = concatenate([Conv2DTranspose(flt*8, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3) |
|
|
80 |
conv6 = Conv2D(flt*8, (3, 3), activation='relu', padding='same')(up6) |
|
|
81 |
conv6 = Conv2D(flt*4, (3, 3), activation='relu', padding='same')(conv6) |
|
|
82 |
|
|
|
83 |
up7 = concatenate([Conv2DTranspose(flt*4, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3) |
|
|
84 |
conv7 = Conv2D(flt*4, (3, 3), activation='relu', padding='same')(up7) |
|
|
85 |
conv7 = Conv2D(flt*2, (3, 3), activation='relu', padding='same')(conv7) |
|
|
86 |
|
|
|
87 |
up8 = concatenate([Conv2DTranspose(flt*2, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3) |
|
|
88 |
conv8 = Conv2D(flt*2, (3, 3), activation='relu', padding='same')(up8) |
|
|
89 |
conv8 = Conv2D(flt, (3, 3), activation='relu', padding='same')(conv8) |
|
|
90 |
|
|
|
91 |
up9 = concatenate([Conv2DTranspose(flt, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3) |
|
|
92 |
conv9 = Conv2D(flt, (3, 3), activation='relu', padding='same')(up9) |
|
|
93 |
conv9 = Conv2D(flt, (3, 3), activation='relu', padding='same')(conv9) |
|
|
94 |
|
|
|
95 |
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9) |
|
|
96 |
|
|
|
97 |
model = Model(inputs=[inputs], outputs=[conv10]) |
|
|
98 |
|
|
|
99 |
model.compile(optimizer=Adam(lr=init_lr), loss=dice_coef_loss, metrics=[dice_coef]) |
|
|
100 |
|
|
|
101 |
return model |
|
|
102 |
|
|
|
103 |
|
|
|
104 |
def train(fold, plane, batch_size, nb_epoch,init_lr): |
|
|
105 |
""" |
|
|
106 |
train an Unet model with data from load_train_data() |
|
|
107 |
|
|
|
108 |
Parameters |
|
|
109 |
---------- |
|
|
110 |
fold : string |
|
|
111 |
which fold is experimenting in 4-fold. It should be one of 0/1/2/3 |
|
|
112 |
|
|
|
113 |
plane : char |
|
|
114 |
which plane is experimenting. It is from 'X'/'Y'/'Z' |
|
|
115 |
|
|
|
116 |
batch_size : int |
|
|
117 |
size of mini-batch |
|
|
118 |
|
|
|
119 |
nb_epoch : int |
|
|
120 |
number of epochs to train NN |
|
|
121 |
|
|
|
122 |
init_lr : float |
|
|
123 |
initial learning rate |
|
|
124 |
""" |
|
|
125 |
|
|
|
126 |
print "number of epoch: ", nb_epoch |
|
|
127 |
print "learning rate: ", init_lr |
|
|
128 |
|
|
|
129 |
# --------------------- load and preprocess training data ----------------- |
|
|
130 |
print '-'*80 |
|
|
131 |
print ' Loading and preprocessing train data...' |
|
|
132 |
print '-'*80 |
|
|
133 |
|
|
|
134 |
imgs_train, imgs_mask_train = load_train_data(fold, plane) |
|
|
135 |
|
|
|
136 |
imgs_row = imgs_train.shape[1] |
|
|
137 |
imgs_col = imgs_train.shape[2] |
|
|
138 |
|
|
|
139 |
imgs_train = preprocess(imgs_train) |
|
|
140 |
imgs_mask_train = preprocess(imgs_mask_train) |
|
|
141 |
|
|
|
142 |
imgs_train = imgs_train.astype('float32') |
|
|
143 |
imgs_mask_train = imgs_mask_train.astype('float32') |
|
|
144 |
|
|
|
145 |
# ---------------------- Create, compile, and train model ------------------------ |
|
|
146 |
print '-'*80 |
|
|
147 |
print ' Creating and compiling model...' |
|
|
148 |
print '-'*80 |
|
|
149 |
|
|
|
150 |
model = get_unet((imgs_row, imgs_col), pool_size=(2, 2, 2), init_lr=init_lr) |
|
|
151 |
print model.summary() |
|
|
152 |
|
|
|
153 |
print '-'*80 |
|
|
154 |
print ' Fitting model...' |
|
|
155 |
print '-'*80 |
|
|
156 |
|
|
|
157 |
ver = 'unet_fd%s_%s_ep%s_lr%s.csv'%(cur_fold, plane, epoch, init_lr) |
|
|
158 |
csv_logger = CSVLogger(log_path + ver) |
|
|
159 |
model_checkpoint = ModelCheckpoint(model_path + ver + ".h5", |
|
|
160 |
monitor='loss', |
|
|
161 |
save_best_only=False, |
|
|
162 |
period=10) |
|
|
163 |
|
|
|
164 |
history = model.fit(imgs_train, imgs_mask_train, |
|
|
165 |
batch_size= batch_size, epochs= nb_epoch, verbose=1, shuffle=True, |
|
|
166 |
callbacks=[model_checkpoint, csv_logger]) |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
if __name__ == "__main__": |
|
|
170 |
|
|
|
171 |
train(cur_fold, plane, batch_size, epoch, init_lr) |
|
|
172 |
|
|
|
173 |
print "training done" |