[42b56e]: / pre_processing / brain_pipeline.py

Download this file

237 lines (211 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import print_function
from glob import glob
from skimage import io
from errno import EEXIST
from os.path import isdir
from os import makedirs
import numpy as np
import subprocess
import progressbar
__author__ = "Cesare Catavitello"
__license__ = "MIT"
__version__ = "1.0.1"
__maintainer__ = "Cesare Catavitello"
__email__ = "cesarec88@gmail.com"
__status__ = "Production"
# np.random.seed(5) # for reproducibility
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('*', '[', ']'), progressbar.Percentage(), ' '])
def mkdir_p(path):
"""
mkdir -p function, makes folder recursively if required
:param path:
:return:
"""
try:
makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == EEXIST and isdir(path):
pass
else:
raise
def normalize(slice_el):
"""
:param slice_el: image to normalize removing 1% from top and bottom
of histogram (intensity removal)
:return: normalized slice
"""
b = np.percentile(slice_el, 1)
t = np.percentile(slice_el, 99)
slice_el = np.clip(slice_el, b, t)
if np.std(slice_el) == 0:
return slice_el
else:
return (slice_el - np.mean(slice_el)) / np.std(slice_el)
class BrainPipeline(object):
"""
A class for processing brain scans for one patient
"""
def __init__(self, path, n4itk=False, n4itk_apply=False):
"""
:param path: path to directory of one patient. Contains following mha files:
flair, t1, t1c, t2, ground truth (gt)
:param n4itk: True to use n4itk normed t1 scans (defaults to True)
:param n4itk_apply: True to apply and save n4itk filter to t1 and t1c scans for given patient.
"""
self.path = path
self.n4itk = n4itk
self.n4itk_apply = n4itk_apply
self.modes = ['flair', 't1', 't1c', 't2', 'gt']
# slices=[[flair x 155], [t1], [t1c], [t2], [gt]], 155 per modality
self.slices_by_mode, n = self.read_scans()
# [ [slice1 x 5], [slice2 x 5], ..., [slice155 x 5]]
self.slices_by_slice = n
self.normed_slices = self.norm_slices()
def read_scans(self):
"""
goes into each modality in patient directory and loads individual scans.
transforms scans of same slice into strip of 5 images
"""
print('Loading scans...')
slices_by_mode = np.zeros((5, 176, 216, 160))
slices_by_slice = np.zeros((176, 5, 216, 160))
flair = glob(self.path + '/*Flair*/*.mha')
t2 = glob(self.path + '/*_T2*/*.mha')
gt = glob(self.path + '/*more*/*.mha')
t1s = glob(self.path + '/**/*T1*.mha')
t1_n4 = glob(self.path + '/*T1*/*_n.mha')
t1 = [scan for scan in t1s if scan not in t1_n4]
scans = [flair[0], t1[0], t1[1], t2[0], gt[0]] # directories to each image (5 total)
if self.n4itk_apply:
print('-> Applyling bias correction...')
for t1_path in t1:
self.n4itk_norm(t1_path) # normalize files
scans = [flair[0], t1_n4[0], t1_n4[1], t2[0], gt[0]]
elif self.n4itk:
scans = [flair[0], t1_n4[0], t1_n4[1], t2[0], gt[0]]
for scan_idx in xrange(5):
# read each image directory, save to self.slices
print(io.imread(scans[scan_idx], plugin='simpleitk').astype(float).shape)
print(scans[scan_idx])
print('*' * 100)
try:
slices_by_mode[scan_idx] = io.imread(scans[scan_idx], plugin='simpleitk').astype(float)
except:
continue
for mode_ix in xrange(slices_by_mode.shape[0]): # modes 1 thru 5
for slice_ix in xrange(slices_by_mode.shape[1]): # slices 1 thru 155
slices_by_slice[slice_ix][mode_ix] = slices_by_mode[mode_ix][slice_ix] # reshape by slice
return slices_by_mode, slices_by_slice
def norm_slices(self):
"""
normalizes each slice in self.slices_by_slice, excluding gt
subtracts mean and div by std dev for each slice
clips top and bottom one percent of pixel intensities
if n4itk == True, will apply n4itk bias correction to T1 and T1c images
"""
print('Normalizing slices...')
normed_slices = np.zeros((176, 5, 216, 160))
for slice_ix in xrange(176):
normed_slices[slice_ix][-1] = self.slices_by_slice[slice_ix][-1]
for mode_ix in xrange(4):
normed_slices[slice_ix][mode_ix] = normalize(self.slices_by_slice[slice_ix][mode_ix])
print ('Done.')
return normed_slices
def save_patient(self, reg_norm_n4, patient_num):
"""
saves png in Norm_PNG directory for normed, Training_PNG for reg
:param reg_norm_n4: 'reg' for original images, 'norm' normalized images,
'n4' for n4 normalized images
:param patient_num: unique identifier for each patient
:return:
"""
print('Saving scans for patient {}...'.format(patient_num))
progress.currval = 0
if reg_norm_n4 == 'norm': # saved normed slices
for slice_ix in progress(xrange(176)): # reshape to strip
strip = self.normed_slices[slice_ix].reshape(1080, 160)
if np.max(strip) != 0: # set values < 1
strip /= np.max(strip)
if np.min(strip) <= -1: # set values > -1
strip /= abs(np.min(strip))
# save as patient_slice.png
try:
io.imsave('Norm_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
except:
mkdir_p('Norm_PNG/')
io.imsave('Norm_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
elif reg_norm_n4 == 'reg':
# for slice_ix in progress(xrange(155)):
for slice_ix in progress(xrange(176)):
strip = self.slices_by_slice[slice_ix].reshape(1080, 160)
if np.max(strip) != 0:
strip /= np.max(strip)
try:
io.imsave('Training_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
except:
mkdir_p('Training_PNG/')
io.imsave('Training_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
else:
for slice_ix in progress(xrange(176)): # reshape to strip
strip = self.normed_slices[slice_ix].reshape(1080, 160)
if np.max(strip) != 0: # set values < 1
strip /= np.max(strip)
if np.min(strip) <= -1: # set values > -1
strip /= abs(np.min(strip))
# save as patient_slice.png
try:
io.imsave('n4_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
except:
mkdir_p('n4_PNG/')
io.imsave('n4_PNG/{}_{}.png'.format(patient_num, slice_ix), strip)
def n4itk_norm(self, path, n_dims=3, n_iters='[20,20,10,5]'):
"""
writes n4itk normalized image to parent_dir under orig_filename_n.mha
:param path: path to mha T1 or T1c file
:param n_dims: param for n4itk filter
:param n_iters: param for n4itk filter
:return:
"""
output_fn = path[:-4] + '_n.mha'
# run n4_bias_correction.py path n_dim n_iters output_fn
subprocess.call('python n4_bias_correction.py ' + path + ' ' + str(n_dims) + ' ' + n_iters + ' ' + output_fn,
shell=True)
def save_patient_slices(patients_path, type_modality):
"""
saves strips of patient slices to approriate directory (Training_PNG/, Norm_PNG/ or n4_PNG/)
as patient-num_slice-num
:param patients_path: paths to any directories of patients to save. for example- glob("Training/HGG/**"
:param type_modality: options = reg (non-normalized), norm (normalized, but no bias correction),
n4 (bias corrected and normalized
:return:
"""
for patient_num, path in enumerate(patients_path):
a = BrainPipeline(path)
a.save_patient(type_modality, patient_num)
def save_labels(labels):
"""
it load the .mha instances of images labels and saves them into .png format
for each slide of each patient
:param labels: list of filepaths to all labels
:return:
"""
progress.currval = 0
for label_idx in progress(xrange(len(labels))):
print(labels[label_idx])
slices = io.imread(labels[label_idx], plugin='simpleitk')
for slice_idx in xrange(len(slices)):
print(np.max(slices[slice_idx]), slices[slice_idx].shape)
try:
io.imsave('Labels/{}_{}L.png'.format(label_idx, slice_idx), slices[slice_idx])
except:
mkdir_p('Labels/')
io.imsave('Labels/{}_{}L.png'.format(label_idx, slice_idx), slices[slice_idx])
print('*' * 100, 'ok')
if __name__ == '__main__':
# labels = glob('/Users/Cesare/Desktop/lavoro/brain_segmentation-master/BRATS-2/Image_Data/HG/**/*more*/**.mha')
# print labels
# save_labels(labels)
patients = glob('/Users/Cesare/Desktop/lavoro/brain_segmentation-master/BRATS-2/Image_Data/HG/**')
save_patient_slices(patients, 'reg')
save_patient_slices(patients, 'norm')
save_patient_slices(patients, 'n4')