|
a |
|
b/Models_3D.py |
|
|
1 |
""" |
|
|
2 |
This code was write by Dr. Jun Zhang. If you use this code please follow the licence of Attribution-NonCommercial-ShareAlike 4.0 International. |
|
|
3 |
|
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import torch |
|
|
7 |
import torch.nn as nn |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def center_crop(layer, n_size): |
|
|
12 |
cropidx = (layer.size(2) - n_size) // 2 |
|
|
13 |
return layer[:, :, cropidx:(cropidx + n_size), cropidx:(cropidx + n_size),cropidx:(cropidx + n_size)] |
|
|
14 |
|
|
|
15 |
class ModelBreast(nn.Module): |
|
|
16 |
def __init__(self, in_channel, n_classes): |
|
|
17 |
self.in_channel = in_channel |
|
|
18 |
self.n_classes = n_classes |
|
|
19 |
self.start_channel = 32 |
|
|
20 |
|
|
|
21 |
super(ModelBreast, self).__init__() |
|
|
22 |
self.eninput = self.encoder(self.in_channel, self.start_channel, bias=False) |
|
|
23 |
self.ec1 = self.encoder(self.start_channel, self.start_channel, bias=False) |
|
|
24 |
self.ec2 = self.encoder(self.start_channel, self.start_channel*2, bias=False) |
|
|
25 |
self.ec3 = self.encoder(self.start_channel*2, self.start_channel*2, bias=False) |
|
|
26 |
self.ec4 = self.encoder(self.start_channel*2, self.start_channel*4, bias=False) |
|
|
27 |
self.ec5 = self.encoder(self.start_channel*4, self.start_channel*4, bias=False) |
|
|
28 |
self.ec6 = self.encoder(self.start_channel*4, self.start_channel*8, bias=False) |
|
|
29 |
self.ec7 = self.encoder(self.start_channel*8, self.start_channel*4, bias=False) |
|
|
30 |
|
|
|
31 |
self.pool = nn.MaxPool3d(2) |
|
|
32 |
|
|
|
33 |
self.dc1 = self.encoder(self.start_channel*4+self.start_channel*4, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
34 |
self.dc2 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
35 |
self.dc3 = self.encoder(self.start_channel*2+self.start_channel*2, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
36 |
self.dc4 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
37 |
self.dc5 = self.encoder(self.start_channel*2+self.start_channel*1, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
38 |
self.dc6 = self.encoder(self.start_channel*2, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
39 |
self.dc7 = self.outputs(self.start_channel*2, self.n_classes, kernel_size=1, stride=1,padding=0, bias=False) |
|
|
40 |
|
|
|
41 |
self.up1 = self.decoder(self.start_channel*4, self.start_channel*4) |
|
|
42 |
self.up2 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
43 |
self.up3 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
44 |
|
|
|
45 |
def encoder(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
46 |
bias=False, batchnorm=True): |
|
|
47 |
if batchnorm: |
|
|
48 |
layer = nn.Sequential( |
|
|
49 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
50 |
nn.BatchNorm3d(out_channels), |
|
|
51 |
nn.ReLU()) |
|
|
52 |
else: |
|
|
53 |
layer = nn.Sequential( |
|
|
54 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
55 |
nn.ReLU()) |
|
|
56 |
return layer |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def decoder(self, in_channels, out_channels, kernel_size=2, stride=2, padding=0, |
|
|
60 |
output_padding=0, bias=True): |
|
|
61 |
layer = nn.Sequential( |
|
|
62 |
nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, |
|
|
63 |
padding=padding, output_padding=output_padding, bias=bias), |
|
|
64 |
nn.ReLU()) |
|
|
65 |
return layer |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
def outputs(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
69 |
bias=False, batchnorm=True): |
|
|
70 |
if batchnorm: |
|
|
71 |
layer = nn.Sequential( |
|
|
72 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
73 |
nn.BatchNorm3d(out_channels), |
|
|
74 |
nn.Sigmoid()) |
|
|
75 |
else: |
|
|
76 |
layer = nn.Sequential( |
|
|
77 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
78 |
nn.Sigmoid()) |
|
|
79 |
return layer |
|
|
80 |
|
|
|
81 |
def forward(self, x): |
|
|
82 |
e0 = self.eninput(x) |
|
|
83 |
e0 = self.ec1(e0) |
|
|
84 |
|
|
|
85 |
e1 = self.pool(e0) |
|
|
86 |
e1 = self.ec2(e1) |
|
|
87 |
e1 = self.ec3(e1) |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
e2 = self.pool(e1) |
|
|
91 |
e2 = self.ec4(e2) |
|
|
92 |
e2 = self.ec5(e2) |
|
|
93 |
|
|
|
94 |
e3 = self.pool(e2) |
|
|
95 |
e3 = self.ec6(e3) |
|
|
96 |
e3 = self.ec7(e3) |
|
|
97 |
|
|
|
98 |
d0 = torch.cat((self.up1(e3), center_crop(e2,e3.size(2)*2)), 1) |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
d0 = self.dc1(d0) |
|
|
102 |
d0 = self.dc2(d0) |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
d1 = torch.cat((self.up2(d0), center_crop(e1,d0.size(2)*2)), 1) |
|
|
106 |
|
|
|
107 |
d1 = self.dc3(d1) |
|
|
108 |
d1 = self.dc4(d1) |
|
|
109 |
|
|
|
110 |
d2 = torch.cat((self.up3(d1), center_crop(e0,d1.size(2)*2)), 1) |
|
|
111 |
|
|
|
112 |
d2 = self.dc5(d2) |
|
|
113 |
d2 = self.dc6(d2) |
|
|
114 |
d2 = self.dc7(d2) |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
return d2 |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
class ModelTumor(nn.Module): |
|
|
122 |
def __init__(self, in_channel, n_classes): |
|
|
123 |
self.in_channel = in_channel |
|
|
124 |
self.n_classes = n_classes |
|
|
125 |
self.start_channel = 32 |
|
|
126 |
|
|
|
127 |
super(ModelTumor, self).__init__() |
|
|
128 |
self.eninput = self.encoder(self.in_channel, self.start_channel, bias=False) |
|
|
129 |
self.ec1 = self.encoder(self.start_channel, self.start_channel, bias=False) |
|
|
130 |
self.ec2 = self.encoder(self.start_channel, self.start_channel*2, bias=False) |
|
|
131 |
self.ec3 = self.encoder(self.start_channel*2, self.start_channel*2, bias=False) |
|
|
132 |
self.ec4 = self.encoder(self.start_channel*2, self.start_channel*4, bias=False) |
|
|
133 |
self.ec5 = self.encoder(self.start_channel*4, self.start_channel*2, bias=False) |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
self.pool = nn.MaxPool3d(2) |
|
|
137 |
|
|
|
138 |
|
|
|
139 |
self.dc1 = self.encoder(self.start_channel*2+self.start_channel*2, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
140 |
self.dc2 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
141 |
self.dc3 = self.encoder(self.start_channel*2+self.start_channel*1, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
142 |
self.dc4 = self.encoder(self.start_channel*2, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
143 |
self.dc5 = self.outputs(self.start_channel*2, self.n_classes, kernel_size=1, stride=1,padding=0, bias=False) |
|
|
144 |
|
|
|
145 |
self.up1 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
146 |
self.up2 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
147 |
|
|
|
148 |
def encoder(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
149 |
bias=False, batchnorm=True): |
|
|
150 |
if batchnorm: |
|
|
151 |
layer = nn.Sequential( |
|
|
152 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
153 |
nn.BatchNorm3d(out_channels), |
|
|
154 |
nn.ReLU()) |
|
|
155 |
else: |
|
|
156 |
layer = nn.Sequential( |
|
|
157 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
158 |
nn.ReLU()) |
|
|
159 |
return layer |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
def decoder(self, in_channels, out_channels, kernel_size=2, stride=2, padding=0, |
|
|
163 |
output_padding=0, bias=True): |
|
|
164 |
layer = nn.Sequential( |
|
|
165 |
nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, |
|
|
166 |
padding=padding, output_padding=output_padding, bias=bias), |
|
|
167 |
nn.ReLU()) |
|
|
168 |
return layer |
|
|
169 |
|
|
|
170 |
|
|
|
171 |
def outputs(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
172 |
bias=False, batchnorm=True): |
|
|
173 |
if batchnorm: |
|
|
174 |
layer = nn.Sequential( |
|
|
175 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
176 |
nn.BatchNorm3d(out_channels), |
|
|
177 |
nn.Sigmoid()) |
|
|
178 |
else: |
|
|
179 |
layer = nn.Sequential( |
|
|
180 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
181 |
nn.Sigmoid()) |
|
|
182 |
return layer |
|
|
183 |
|
|
|
184 |
def forward(self, x): |
|
|
185 |
e0 = self.eninput(x) |
|
|
186 |
e0 = self.ec1(e0) |
|
|
187 |
|
|
|
188 |
e1 = self.pool(e0) |
|
|
189 |
e1 = self.ec2(e1) |
|
|
190 |
e1 = self.ec3(e1) |
|
|
191 |
|
|
|
192 |
|
|
|
193 |
e2 = self.pool(e1) |
|
|
194 |
e2 = self.ec4(e2) |
|
|
195 |
e2 = self.ec5(e2) |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
d0 = torch.cat((self.up1(e2), center_crop(e1,e2.size(2)*2)), 1) |
|
|
199 |
|
|
|
200 |
|
|
|
201 |
d0 = self.dc1(d0) |
|
|
202 |
d0 = self.dc2(d0) |
|
|
203 |
|
|
|
204 |
|
|
|
205 |
d1 = torch.cat((self.up2(d0), center_crop(e0,d0.size(2)*2)), 1) |
|
|
206 |
|
|
|
207 |
d1 = self.dc3(d1) |
|
|
208 |
d1 = self.dc4(d1) |
|
|
209 |
d1 = self.dc5(d1) |
|
|
210 |
|
|
|
211 |
return d1 |
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
# Note we trained the model with the same size (96*96*96) of input and output. |
|
|
216 |
# We used zero padding to guarantee the same size of output after filtering |
|
|
217 |
|
|
|
218 |
class ModelTumor_train(nn.Module): |
|
|
219 |
def __init__(self, in_channel, n_classes): |
|
|
220 |
self.in_channel = in_channel |
|
|
221 |
self.n_classes = n_classes |
|
|
222 |
self.start_channel = 32 |
|
|
223 |
|
|
|
224 |
super(ModelTumor_train, self).__init__() |
|
|
225 |
self.eninput = self.encoder(self.in_channel, self.start_channel, bias=False) |
|
|
226 |
self.ec1 = self.encoder(self.start_channel, self.start_channel, bias=False) |
|
|
227 |
self.ec2 = self.encoder(self.start_channel, self.start_channel*2, bias=False) |
|
|
228 |
self.ec3 = self.encoder(self.start_channel*2, self.start_channel*2, bias=False) |
|
|
229 |
self.ec4 = self.encoder(self.start_channel*2, self.start_channel*4, bias=False) |
|
|
230 |
self.ec5 = self.encoder(self.start_channel*4, self.start_channel*2, bias=False) |
|
|
231 |
|
|
|
232 |
|
|
|
233 |
self.pool = nn.MaxPool3d(2) |
|
|
234 |
|
|
|
235 |
|
|
|
236 |
self.dc1 = self.encoder(self.start_channel*2+self.start_channel*2, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
237 |
self.dc2 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
238 |
self.dc3 = self.encoder(self.start_channel*2+self.start_channel*1, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
239 |
self.dc4 = self.encoder(self.start_channel*2, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
240 |
self.dc5 = self.outputs(self.start_channel*2, self.n_classes, kernel_size=1, stride=1,padding=0, bias=False) |
|
|
241 |
|
|
|
242 |
self.up1 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
243 |
self.up2 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
244 |
|
|
|
245 |
def encoder(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, |
|
|
246 |
bias=False, batchnorm=True): |
|
|
247 |
if batchnorm: |
|
|
248 |
layer = nn.Sequential( |
|
|
249 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
250 |
nn.BatchNorm3d(out_channels), |
|
|
251 |
nn.ReLU()) |
|
|
252 |
else: |
|
|
253 |
layer = nn.Sequential( |
|
|
254 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
255 |
nn.ReLU()) |
|
|
256 |
return layer |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
def decoder(self, in_channels, out_channels, kernel_size=2, stride=2, padding=0, |
|
|
260 |
output_padding=0, bias=True): |
|
|
261 |
layer = nn.Sequential( |
|
|
262 |
nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, |
|
|
263 |
padding=padding, output_padding=output_padding, bias=bias), |
|
|
264 |
nn.ReLU()) |
|
|
265 |
return layer |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
def outputs(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
269 |
bias=False, batchnorm=True): |
|
|
270 |
if batchnorm: |
|
|
271 |
layer = nn.Sequential( |
|
|
272 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
273 |
nn.BatchNorm3d(out_channels), |
|
|
274 |
nn.Sigmoid()) |
|
|
275 |
else: |
|
|
276 |
layer = nn.Sequential( |
|
|
277 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
278 |
nn.Sigmoid()) |
|
|
279 |
return layer |
|
|
280 |
|
|
|
281 |
def forward(self, x): |
|
|
282 |
e0 = self.eninput(x) |
|
|
283 |
e0 = self.ec1(e0) |
|
|
284 |
|
|
|
285 |
e1 = self.pool(e0) |
|
|
286 |
e1 = self.ec2(e1) |
|
|
287 |
e1 = self.ec3(e1) |
|
|
288 |
|
|
|
289 |
|
|
|
290 |
e2 = self.pool(e1) |
|
|
291 |
e2 = self.ec4(e2) |
|
|
292 |
e2 = self.ec5(e2) |
|
|
293 |
|
|
|
294 |
|
|
|
295 |
d0 = torch.cat((self.up1(e2), e1), 1) |
|
|
296 |
|
|
|
297 |
|
|
|
298 |
d0 = self.dc1(d0) |
|
|
299 |
d0 = self.dc2(d0) |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
d1 = torch.cat((self.up2(d0), e0), 1) |
|
|
303 |
|
|
|
304 |
d1 = self.dc3(d1) |
|
|
305 |
d1 = self.dc4(d1) |
|
|
306 |
d1 = self.dc5(d1) |
|
|
307 |
|
|
|
308 |
return d1 |
|
|
309 |
|
|
|
310 |
|
|
|
311 |
class ModelBreast_train(nn.Module): |
|
|
312 |
def __init__(self, in_channel, n_classes): |
|
|
313 |
self.in_channel = in_channel |
|
|
314 |
self.n_classes = n_classes |
|
|
315 |
self.start_channel = 32 |
|
|
316 |
|
|
|
317 |
super(ModelBreast_train, self).__init__() |
|
|
318 |
self.eninput = self.encoder(self.in_channel, self.start_channel, bias=False, batchnorm=True) |
|
|
319 |
self.ec1 = self.encoder(self.start_channel, self.start_channel, bias=False, batchnorm=True) |
|
|
320 |
self.ec2 = self.encoder(self.start_channel, self.start_channel*2, bias=False, batchnorm=True) |
|
|
321 |
self.ec3 = self.encoder(self.start_channel*2, self.start_channel*2, bias=False, batchnorm=True) |
|
|
322 |
self.ec4 = self.encoder(self.start_channel*2, self.start_channel*4, bias=False, batchnorm=True) |
|
|
323 |
self.ec5 = self.encoder(self.start_channel*4, self.start_channel*4, bias=False, batchnorm=True) |
|
|
324 |
self.ec6 = self.encoder(self.start_channel*4, self.start_channel*8, bias=False, batchnorm=True) |
|
|
325 |
self.ec7 = self.encoder(self.start_channel*8, self.start_channel*4, bias=False, batchnorm=True) |
|
|
326 |
|
|
|
327 |
self.pool = nn.MaxPool3d(2) |
|
|
328 |
|
|
|
329 |
self.dc1 = self.encoder(self.start_channel*4+self.start_channel*4, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
330 |
self.dc2 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
331 |
self.dc3 = self.encoder(self.start_channel*2+self.start_channel*2, self.start_channel*4, kernel_size=3, stride=1, bias=False) |
|
|
332 |
self.dc4 = self.encoder(self.start_channel*4, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
333 |
self.dc5 = self.encoder(self.start_channel*2+self.start_channel*1, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
334 |
self.dc6 = self.encoder(self.start_channel*2, self.start_channel*2, kernel_size=3, stride=1, bias=False) |
|
|
335 |
self.dc7 = self.outputs(self.start_channel*2, self.n_classes, kernel_size=1, stride=1,padding=0, bias=False) |
|
|
336 |
|
|
|
337 |
self.up1 = self.decoder(self.start_channel*4, self.start_channel*4) |
|
|
338 |
self.up2 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
339 |
self.up3 = self.decoder(self.start_channel*2, self.start_channel*2) |
|
|
340 |
|
|
|
341 |
def encoder(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, |
|
|
342 |
bias=False, batchnorm=True): |
|
|
343 |
if batchnorm: |
|
|
344 |
layer = nn.Sequential( |
|
|
345 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
346 |
nn.BatchNorm3d(out_channels), |
|
|
347 |
nn.ReLU()) |
|
|
348 |
else: |
|
|
349 |
layer = nn.Sequential( |
|
|
350 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
351 |
nn.ReLU()) |
|
|
352 |
return layer |
|
|
353 |
|
|
|
354 |
|
|
|
355 |
def decoder(self, in_channels, out_channels, kernel_size=2, stride=2, padding=0, |
|
|
356 |
output_padding=0, bias=True): |
|
|
357 |
layer = nn.Sequential( |
|
|
358 |
nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, |
|
|
359 |
padding=padding, output_padding=output_padding, bias=bias), |
|
|
360 |
nn.ReLU()) |
|
|
361 |
return layer |
|
|
362 |
|
|
|
363 |
|
|
|
364 |
def outputs(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, |
|
|
365 |
bias=False, batchnorm=True): |
|
|
366 |
if batchnorm: |
|
|
367 |
layer = nn.Sequential( |
|
|
368 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
369 |
nn.BatchNorm3d(out_channels), |
|
|
370 |
nn.Sigmoid()) |
|
|
371 |
else: |
|
|
372 |
layer = nn.Sequential( |
|
|
373 |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias), |
|
|
374 |
nn.Sigmoid()) |
|
|
375 |
return layer |
|
|
376 |
|
|
|
377 |
def forward(self, x): |
|
|
378 |
e0 = self.eninput(x) |
|
|
379 |
e0 = self.ec1(e0) |
|
|
380 |
|
|
|
381 |
e1 = self.pool(e0) |
|
|
382 |
e1 = self.ec2(e1) |
|
|
383 |
e1 = self.ec3(e1) |
|
|
384 |
|
|
|
385 |
|
|
|
386 |
e2 = self.pool(e1) |
|
|
387 |
e2 = self.ec4(e2) |
|
|
388 |
e2 = self.ec5(e2) |
|
|
389 |
|
|
|
390 |
e3 = self.pool(e2) |
|
|
391 |
e3 = self.ec6(e3) |
|
|
392 |
e3 = self.ec7(e3) |
|
|
393 |
|
|
|
394 |
|
|
|
395 |
d0 = torch.cat((self.up1(e3), e2), 1) |
|
|
396 |
|
|
|
397 |
|
|
|
398 |
d0 = self.dc1(d0) |
|
|
399 |
d0 = self.dc2(d0) |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
d1 = torch.cat((self.up2(d0), e1), 1) |
|
|
403 |
|
|
|
404 |
d1 = self.dc3(d1) |
|
|
405 |
d1 = self.dc4(d1) |
|
|
406 |
|
|
|
407 |
d2 = torch.cat((self.up3(d1), e0), 1) |
|
|
408 |
|
|
|
409 |
d2 = self.dc5(d2) |
|
|
410 |
d2 = self.dc6(d2) |
|
|
411 |
d2 = self.dc7(d2) |
|
|
412 |
|
|
|
413 |
return d2 |
|
|
414 |
|
|
|
415 |
|
|
|
416 |
def Dice_loss(input, target): |
|
|
417 |
smooth = 0.00000001 |
|
|
418 |
|
|
|
419 |
y_true_f = input.view(-1) |
|
|
420 |
y_pred_f = target.view(-1) |
|
|
421 |
intersection = torch.sum(torch.mul(y_true_f,y_pred_f)) |
|
|
422 |
|
|
|
423 |
return 1 - ((2. * intersection ) / |
|
|
424 |
(torch.mul(y_true_f,y_true_f).sum() + torch.mul(y_pred_f,y_pred_f).sum() + smooth)) |
|
|
425 |
|
|
|
426 |
def DICESEN_loss(input, target): |
|
|
427 |
smooth = 0.00000001 |
|
|
428 |
y_true_f = input.view(-1) |
|
|
429 |
y_pred_f = target.view(-1) |
|
|
430 |
intersection = torch.sum(torch.mul(y_true_f,y_pred_f)) |
|
|
431 |
dice= (2. * intersection ) / (torch.mul(y_true_f,y_true_f).sum() + torch.mul(y_pred_f,y_pred_f).sum() + smooth) |
|
|
432 |
sen = (1. * intersection ) / (torch.mul(y_true_f,y_true_f).sum() + smooth) |
|
|
433 |
return 2-dice-sen |