|
a |
|
b/Main.py |
|
|
1 |
import os |
|
|
2 |
from Segmenation import BreastSeg,BreastTumor |
|
|
3 |
from ImageProcessing import read_image,Norm_Zscore,imgnorm,save_image,labeling_seg |
|
|
4 |
import argparse |
|
|
5 |
import torch |
|
|
6 |
try: |
|
|
7 |
torch._utils._rebuild_tensor_v2 |
|
|
8 |
except AttributeError: |
|
|
9 |
def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): |
|
|
10 |
tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) |
|
|
11 |
tensor.requires_grad = requires_grad |
|
|
12 |
tensor._backward_hooks = backward_hooks |
|
|
13 |
return tensor |
|
|
14 |
torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
parser = argparse.ArgumentParser(description='Tumor Segmentation from DCE-MRI') |
|
|
18 |
parser.add_argument('--cuda', type=int, default='1', required=False, help='Run in GPU') |
|
|
19 |
parser.add_argument('--pre', type=str, default='Data/Img1_pre.nii.gz', required=False, help='Image path for pre-constrast image') |
|
|
20 |
parser.add_argument('--post', type=str, default='Data/Img1_post.nii.gz', required=False, help='Image path for post-constrast image') |
|
|
21 |
parser.add_argument('--outfolder',type=str,default='Results',required=False,help='Folder for saving results') |
|
|
22 |
opt = parser.parse_args() |
|
|
23 |
print(opt) |
|
|
24 |
|
|
|
25 |
if opt.cuda and not torch.cuda.is_available(): |
|
|
26 |
raise Exception("No GPU found, please run without --cuda 0") |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
|
|
|
30 |
savepath = opt.outfolder |
|
|
31 |
|
|
|
32 |
if not os.path.exists(savepath): |
|
|
33 |
os.makedirs(savepath) |
|
|
34 |
|
|
|
35 |
# read images and output spacing information |
|
|
36 |
print('Reading images') |
|
|
37 |
img_pre, img_post, img_sub, scale_subject = read_image(opt) |
|
|
38 |
|
|
|
39 |
# perform the intensity normalization 1) remover outliers 2) Z-score normalization |
|
|
40 |
# spatial normalization will be done before segmentation in the functions of BrestSeg and BreastTumor |
|
|
41 |
print('Performing image normalization') |
|
|
42 |
img_pre = Norm_Zscore(imgnorm(img_pre)) |
|
|
43 |
img_post = Norm_Zscore(imgnorm(img_post)) |
|
|
44 |
img_sub = Norm_Zscore(imgnorm(img_sub)) |
|
|
45 |
|
|
|
46 |
# read models |
|
|
47 |
# the weights of the models will be loaded in the function of BrestSeg and BreastTumor |
|
|
48 |
from Models_3D import ModelBreast,ModelTumor |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
if opt.cuda: |
|
|
52 |
model_breast = ModelBreast(1,1).cuda() |
|
|
53 |
else: |
|
|
54 |
model_breast = ModelBreast(1,1) |
|
|
55 |
if opt.cuda: |
|
|
56 |
model_tumor = ModelTumor(3,1).cuda() |
|
|
57 |
else: |
|
|
58 |
model_tumor = ModelTumor(3,1) |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
# perform image segmentation |
|
|
62 |
print('Performing image segmentation') |
|
|
63 |
breast_mask = BreastSeg(img_pre,scale_subject,model_breast,opt) |
|
|
64 |
prob_1st, seg_2nd = BreastTumor(img_sub,img_post,breast_mask,scale_subject,model_tumor,model_tumor,opt) |
|
|
65 |
|
|
|
66 |
# perform labeling |
|
|
67 |
labeled_image = labeling_seg(seg_2nd) |
|
|
68 |
|
|
|
69 |
# save images |
|
|
70 |
print('Saving segmentations') |
|
|
71 |
save_image(breast_mask,opt,'breast_mask.nii.gz') |
|
|
72 |
save_image(prob_1st,opt,'prob_1st.nii.gz') |
|
|
73 |
save_image(labeled_image,opt,'seg_2nd.nii.gz') |
|
|
74 |
print('Please check the segmentation results in the result folder ---> "Results"') |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
|
78 |
|
|
|
79 |
|
|
|
80 |
|