[96354c]: / src / train / trainer.py

Download this file

271 lines (205 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
from PIL import Image
from torchvision import transforms as T
from tqdm import tqdm
from src.dataset.utils.visualization import plot_batch
from src.models.io_model import save_checkpoint, save_model
from src.metrics.training_metrics import AverageMeter
from src.logging_conf import logger
class TrainerArgs:
def __init__(self, n_epochs=50, device="cpu", output_path="", loss="dice"):
self.n_epochs = n_epochs
self.device = device
self.output_path = output_path
self.loss = loss
class Trainer:
def __init__(self, args, model, optimizer, criterion, start_epoch, train_loader, val_loader, lr_scheduler, writer):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.train_data_loader = train_loader
self.number_train_data = len(self.train_data_loader)
self.valid_data_loader = val_loader
self.number_val_data = len(self.valid_data_loader)
self.lr_scheduler = lr_scheduler
self.writer = writer
self.start_epoch = start_epoch
self.args = args
def start(self, best_loss=1000):
val_dice_score = 0
for epoch in range(self.start_epoch, self.args.n_epochs):
train_dice_loss, train_dice_score, train_combined_loss, train_ce_loss = self.train_epoch(epoch)
val_dice_loss, val_dice_score, val_combined_loss, val_ce_loss = self.val_epoch(epoch)
val_loss = val_combined_loss if self.args.loss == "combined" else val_dice_loss
if self.lr_scheduler:
self.lr_scheduler.step(val_loss)
self._epoch_summary(epoch, train_dice_loss, val_dice_loss, train_dice_score, val_dice_score,
train_combined_loss, train_ce_loss, val_combined_loss, val_ce_loss)
is_best = bool(val_loss < best_loss)
best_loss = val_loss if is_best else best_loss
save_checkpoint({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'val_loss': best_loss,
'val_dice_score': val_dice_score
}, is_best, self.args.output_path)
save_model({
'epoch': self.args.n_epochs + 1,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'val_loss': best_loss,
'val_dice_score': val_dice_score
}, self.args.output_path)
def train_epoch(self, epoch):
self.model.train()
dice_loss_global, ce_loss_global, combined_loss_global = AverageMeter(), AverageMeter(), AverageMeter()
dice_score = AverageMeter()
i = 0
for data_batch, labels_batch in tqdm(self.train_data_loader, desc="Training epoch"):
def step(trainer):
trainer.optimizer.zero_grad()
inputs = data_batch.float().to(trainer.args.device)
targets = labels_batch.float().to(trainer.args.device)
inputs.require_grad = True
if i == 0:
self.writer.add_graph(trainer.model, inputs)
predictions, _ = trainer.model(inputs)
if trainer.args.loss == "dice":
dice_loss, mean_dice, per_channel_dice = trainer.criterion(predictions, targets)
subregion_loss = []
dice_loss.backward()
trainer.optimizer.step()
trainer.writer.add_scalar('Training Dice Loss NCR', per_channel_dice[0].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Loss ED', per_channel_dice[1].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Loss ET', per_channel_dice[2].detach().item(),
epoch * trainer.number_train_data + i)
elif trainer.args.loss == "both_dice":
total_loss, dice_loss, mean_dice, dice_loss_reg, subregion_loss = trainer.criterion(predictions,
targets)
total_loss.backward()
trainer.optimizer.step()
total_loss = total_loss.detach().item()
dice_loss_reg = dice_loss_reg.detach().item()
trainer.writer.add_scalar('Train combined Region-Dice Loss', total_loss,
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Train region dice loss', dice_loss_reg,
epoch * trainer.number_train_data + i)
elif trainer.args.loss == "gdl":
dice_loss, mean_dice = trainer.criterion(predictions, targets)
subregion_loss = []
dice_loss.backward()
trainer.optimizer.step()
else:
combined_loss, dice_loss, ce_loss, mean_dice, subregion_loss = trainer.criterion(predictions,
targets)
combined_loss.backward()
trainer.optimizer.step()
combined_loss = combined_loss.detach().item()
ce_loss = ce_loss.detach().item()
combined_loss_global.update(combined_loss, data_batch.size(0))
ce_loss_global.update(ce_loss, data_batch.size(0))
trainer.writer.add_scalar('Train combined CE-Dice Loss', combined_loss,
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Train Cross Entropy Loss', ce_loss,
epoch * trainer.number_train_data + i)
dice_loss = dice_loss.detach().item()
mean_dice = mean_dice.detach().item()
dice_loss_global.update(dice_loss, data_batch.size(0))
dice_score.update(mean_dice, data_batch.size(0))
if subregion_loss:
trainer.writer.add_scalar('Training Dice Loss WT', subregion_loss[0].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Loss TC', subregion_loss[1].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Loss ET', subregion_loss[2].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Loss', dice_loss, epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Training Dice Score', mean_dice, epoch * trainer.number_train_data + i)
trainer._add_image(data_batch, False, "Modality patch")
trainer._add_image(labels_batch, True, "Segmentation ground truth patch")
trainer._add_image(predictions.max(1)[1], True, "Segmentation prediction patch")
step(self)
i += 1
if self.args.loss == "combined":
return dice_loss_global.avg(), dice_score.avg(), combined_loss_global.avg(), ce_loss_global.avg()
else:
return dice_loss_global.avg(), dice_score.avg(), 0, 0
def _add_image(self, batch, seg=False, title=""):
plot_buf = plot_batch(batch, seg=seg, slice=16, batch_size=len(batch))
im = Image.open(plot_buf)
image = T.ToTensor()(im)
self.writer.add_image(title, image)
def val_epoch(self, epoch):
self.model.eval()
losses, ce_loss_global, combined_loss_global = AverageMeter(), AverageMeter(), AverageMeter()
dice_score = AverageMeter()
i = 0
for data_batch, labels_batch in tqdm(self.valid_data_loader, desc="Validation epoch"):
def step(trainer):
inputs = data_batch.float().to(trainer.args.device)
targets = labels_batch.float().to(trainer.args.device)
with torch.no_grad():
outputs, _ = trainer.model(inputs)
if trainer.args.loss == "dice":
dice_loss, mean_dice, subregion_loss = trainer.criterion(outputs, targets)
elif trainer.args.loss == "gdl":
dice_loss, mean_dice = trainer.criterion(outputs, targets)
subregion_loss = []
elif trainer.args.loss == "both_dice":
total_loss, dice_loss, mean_dice, dice_loss_reg, subregion_loss = trainer.criterion(outputs,
targets)
total_loss = total_loss.detach().item()
dice_loss_reg = dice_loss_reg.detach().item()
trainer.writer.add_scalar('Validation combined Region-Dice Loss', total_loss,
epoch * trainer.number_val_data + i)
trainer.writer.add_scalar('Validation region dice loss', dice_loss_reg,
epoch * trainer.number_val_data + i)
else:
combined_loss, dice_loss, ce_loss, mean_dice, subregion_loss = trainer.criterion(outputs,
targets)
combined_loss = combined_loss.detach().item()
ce_loss = ce_loss.detach().item()
combined_loss_global.update(combined_loss, data_batch.size(0))
ce_loss_global.update(ce_loss, data_batch.size(0))
trainer.writer.add_scalar('Validation Combined CE-Dice Loss', combined_loss,
epoch * trainer.number_val_data + i)
trainer.writer.add_scalar('Validation Cross Entropy Loss', ce_loss,
epoch * trainer.number_val_data + i)
dice_loss = dice_loss.detach().item()
mean_dice = mean_dice.detach().item()
losses.update(dice_loss, data_batch.size(0))
dice_score.update(mean_dice, data_batch.size(0))
if subregion_loss:
trainer.writer.add_scalar('Validation Dice Loss WT', subregion_loss[0].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Validation Dice Loss TC', subregion_loss[1].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Validation Dice Loss ET', subregion_loss[2].detach().item(),
epoch * trainer.number_train_data + i)
trainer.writer.add_scalar('Validation Dice Loss', dice_loss, epoch * trainer.number_val_data + i)
trainer.writer.add_scalar('Validation Dice Score', mean_dice, epoch * trainer.number_val_data + i)
trainer._add_image(data_batch, False, "Val Modality patch")
trainer._add_image(labels_batch, True, "Val Segmentation ground truth patch")
trainer._add_image(outputs.max(1)[1], True, "Val Segmentation prediction patch")
step(self)
i += 1
if self.args.loss == "combined":
return losses.avg(), dice_score.avg(), combined_loss_global.avg(), ce_loss_global.avg()
else:
return losses.avg(), dice_score.avg(), 0, 0
def _epoch_summary(self, epoch, train_loss, val_loss, train_dice_score, val_dice_score, train_combined_loss,
train_ce_loss, val_combined_loss, val_ce_loss):
if self.args.loss == "dice" or self.args.loss == "both_dice":
logger.info(f'epoch: {epoch}\n '
f'** Dice Loss ** : train_loss: {train_loss:.2f} | val_loss {val_loss:.2f} \n'
f'** Dice Score ** : train_dice_score {train_dice_score:.2f} | val_dice_score {val_dice_score:.2f}')
else:
logger.info(f'epoch: {epoch}\n'
f'** Combined Loss ** : train_loss: {train_combined_loss:.2f} | val_loss {val_combined_loss:.2f} \n'
f'** CE Loss ** : train_loss {train_ce_loss:.2f} | val_loss {val_ce_loss:.2f}\n'
f'** Dice Loss ** : train_loss: {train_loss:.2f} | val_loss {val_loss:.2f} \n'
f'** Dice Score ** : train_dice_score {train_dice_score:.2f} | val_dice_score {val_dice_score:.2f}\n'
)