import os
import sys
import torch
from src.dataset.utils import nifi_volume
from tqdm import tqdm
import numpy as np
from src.dataset import brats_labels
from src.compute_metric_results import compute_wt_tc_et
from src.config import BratsConfiguration
from src.dataset.utils import dataset, visualization
from src.models.io_model import load_model
from src.models.vnet import vnet
from src.test import predict
from src.uncertainty.uncertainty import get_variation_uncertainty
if __name__ == "__main__":
config = BratsConfiguration(sys.argv[1])
model_config = config.get_model_config()
dataset_config = config.get_dataset_config()
basic_config = config.get_basic_config()
unc_config = config.get_uncertainty_config()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
add_padding = True if dataset_config.get("sampling_method").split(".")[-1] == "no_patch" else False
network = vnet.VNet(elu=model_config.getboolean("use_elu"), in_channels=4, classes=4)
network.to(device)
checkpoint_path = os.path.join(model_config.get("model_path"), model_config.get("checkpoint"))
model_path = os.path.dirname(checkpoint_path)
model, _, _, _ = load_model(network, checkpoint_path, device, None, False)
_, data_test = dataset.read_brats(dataset_config.get("train_csv"))
patient = data_test[0]
patch_size = patient.size
images = patient.load_mri_volumes(normalize=True)
prediction_four_channels, vector_prediction_scores = predict.predict(model, images, False, device, monte_carlo=False)
pred = prediction_four_channels.max(1)[1]
et = brats_labels.get_et(pred)
tc = brats_labels.get_tc(pred)
wt = brats_labels.get_wt(pred)
print()