import time
import pytest
from src.dataset.loaders.brats_dataset import BratsDataset
from src.dataset.patient import Patient
from torch.utils.data import DataLoader
@pytest.fixture("function")
def dataset():
data = [Patient(idx="", center="", grade="", patient="BraTS20_Training_001", patch_name="BraTS20_Training_001",
size=[240, 240, 155] , data_path="/Users/lauramora/Documents/MASTER/TFM/Data/2020/train/no_patch/",
train=True)] * 10
return data
def test_dataset_no_patch(dataset):
bs = 5
brats_dataset = BratsDataset(dataset, None, (240, 240, 155), compute_patch=False)
loader = DataLoader(dataset=brats_dataset, batch_size=bs, shuffle=True, num_workers=1)
start = time.time()
modalities, segmentation = next(iter(loader))
print("\n Time: ", time.time()-start)
assert modalities.shape == (bs, 4, 240, 240, 155)
assert segmentation.shape == (bs, 240, 240, 155)
def test_dataset_random_distribution(dataset):
bs = 5
from src.dataset.patching import random_distribution
brats_dataset = BratsDataset(dataset, random_distribution, (128, 128, 128), compute_patch=True)
loader = DataLoader(dataset=brats_dataset, batch_size=bs, shuffle=True, num_workers=1)
start = time.time()
modalities, segmentation = next(iter(loader))
print("\n Time: ", time.time()-start)
assert modalities.shape == (bs, 4, 128, 128, 128)
assert segmentation.shape == (bs, 128, 128, 128)
def test_dataset_random_tumor_distribution(dataset):
bs = 2
from src.dataset.patching import random_tumor_distribution
brats_dataset = BratsDataset(dataset, random_tumor_distribution, (128, 128, 128), compute_patch=True)
loader = DataLoader(dataset=brats_dataset, batch_size=bs, shuffle=True, num_workers=1)
start = time.time()
modalities, segmentation = next(iter(loader))
print("\n Time: ", time.time()-start)
assert modalities.shape == (bs, 4, 128, 128, 128)
assert segmentation.shape == (bs, 128, 128, 128)