[96354c]: / src / models / unet3d / unet3d.py

Download this file

204 lines (159 with data), 9.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
from src.models.unet3d.building_blocks import Encoder, Decoder, DoubleConv, ExtResNetBlock
from torchsummary import summary
def number_of_features_per_level(init_channel_number, num_levels):
return [init_channel_number * 2 ** k for k in range(num_levels)]
class Abstract3DUNet(nn.Module):
"""
Base class for standard and residual UNet.
Args:
in_channels (int): number of input channels
out_channels (int): number of output segmentation masks;
Note that that the of out_channels might correspond to either
different semantic classes or to different binary segmentation mask.
It's up to the user of the class to interpret the out_channels and
use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class)
or BCEWithLogitsLoss (two-class) respectively)
f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number
of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4
final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the
final 1x1 convolution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used
to train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the model.
basic_module: basic model for the encoder/decoder (DoubleConv, ExtResNetBlock, ....)
layer_order (string): determines the order of layers
in `SingleConv` module. e.g. 'crg' stands for Conv3d+ReLU+GroupNorm3d.
See `SingleConv` for more info
num_groups (int): number of groups for the GroupNorm
num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int)
testing (bool): if True (testing mode) the `final_activation` (if present, i.e. `is_segmentation=true`)
will be applied as the last operation during the forward pass; if False the model is in training mode
and the `final_activation` (even if present) won't be applied; default: False
conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module
pool_kernel_size (int or tuple): the size of the window
conv_padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=4,
conv_kernel_size=3, pool_kernel_size=2, conv_padding=1, **kwargs):
super(Abstract3DUNet, self).__init__()
if isinstance(f_maps, int):
f_maps = number_of_features_per_level(f_maps, num_levels=num_levels)
# create encoder path consisting of Encoder modules. Depth of the encoder is equal to `len(f_maps)`
encoders = []
for i, out_feature_num in enumerate(f_maps):
if i == 0:
encoder = Encoder(in_channels, out_feature_num,
apply_pooling=False, # skip pooling in the first encoder
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
padding=conv_padding)
else:
encoder = Encoder(f_maps[i - 1], out_feature_num,
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
pool_kernel_size=pool_kernel_size,
padding=conv_padding)
encoders.append(encoder)
self.encoders = nn.ModuleList(encoders)
# create decoder path consisting of the Decoder modules. The length of the decoder is equal to `len(f_maps) - 1`
decoders = []
reversed_f_maps = list(reversed(f_maps))
for i in range(len(reversed_f_maps) - 1):
if basic_module == DoubleConv:
in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1]
else:
in_feature_num = reversed_f_maps[i]
out_feature_num = reversed_f_maps[i + 1]
decoder = Decoder(in_feature_num, out_feature_num,
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
padding=conv_padding)
decoders.append(decoder)
self.decoders = nn.ModuleList(decoders)
# in the last layer a 1×1 convolution reduces the number of output
# channels to the number of labels
self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1)
if final_sigmoid:
self.final_activation = nn.Sigmoid()
else:
self.final_activation = nn.Softmax(dim=1)
def forward(self, x):
# encoder part
encoders_features = []
for encoder in self.encoders:
x = encoder(x)
# reverse the encoder outputs to be aligned with the decoder
encoders_features.insert(0, x)
# remove the last encoder's output from the list
# !!remember: it's the 1st in the list
encoders_features = encoders_features[1:]
# decoder part
for decoder, encoder_features in zip(self.decoders, encoders_features):
# pass the output from the corresponding encoder and the output
# of the previous decoder
x = decoder(encoder_features, x)
x = self.final_conv(x)
scores = self.final_activation(x)
return x, scores
class UNet3D(Abstract3DUNet):
"""
3DUnet model from
`"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation"
<https://arxiv.org/pdf/1606.06650.pdf>`.
Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder
"""
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=4, conv_padding=1, **kwargs):
super(UNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid,
basic_module=DoubleConv, f_maps=f_maps, layer_order=layer_order,
num_groups=num_groups, num_levels=num_levels,
conv_padding=conv_padding, **kwargs)
def test(self):
classes = 4
in_channels = 4
input_tensor = torch.rand(1, in_channels, 32, 32, 32)
ideal_out = torch.rand(1, classes, 32, 32, 32)
out_pred, out_scores = self.forward(input_tensor)
assert ideal_out.shape == out_pred.shape
print("UNet3D test is complete")
class ResidualUNet3D(Abstract3DUNet):
"""
Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf.
Uses ExtResNetBlock as a basic building block, summation joining instead
of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts).
Since the model effectively becomes a residual net, in theory it allows for deeper UNet.
"""
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=5, conv_padding=1, **kwargs):
super(ResidualUNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels,
final_sigmoid=final_sigmoid,
basic_module=ExtResNetBlock, f_maps=f_maps, layer_order=layer_order,
num_groups=num_groups, num_levels=num_levels, conv_padding=conv_padding, **kwargs)
def test(self):
classes = 4
in_channels = 4
input_tensor = torch.rand(1, in_channels, 32, 32, 32)
ideal_out = torch.rand(1, classes, 32, 32, 32)
out_pred, _ = self.forward(input_tensor)
assert ideal_out.shape == out_pred.shape
print("ResidualUNet3D test is complete")
if __name__ == "__main__":
import numpy as np
net = ResidualUNet3D(in_channels=4, out_channels=4, f_maps=16)
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(params)
net.test()
unet = UNet3D(in_channels=4, out_channels=4, f_maps=16, final_sigmoid=True, layer_order='crg',
num_groups=8, num_levels=4, conv_padding=1)
model_parameters = filter(lambda p: p.requires_grad, unet.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(params)
unet.test()