[96354c]: / src / dataset / augmentations / data_normalization.py

Download this file

149 lines (113 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from typing import Tuple
import numpy as np
def zero_mean_unit_variance_normalization(data: np.ndarray, epsilon: float = 1e-8) -> np.ndarray:
"""
Normalize a target image by subtracting the mean of the brain region and dividing by the standard deviation
:return: normalized volume: with 0-mean and unit-std for non-zero voxels only!
"""
non_zero = data[data > 0.0]
mean = non_zero.mean()
std = non_zero.std() + epsilon
out = (data - mean) / std
out[data == 0] = 0
return out
class GammaCorrection(object):
def __init__(self, p=0.5, gamma_range=(0.5, 2), invert_image=False, epsilon=1e-7, per_channel=False, retain_stats=False):
super().__init__()
self.p = p
self.invert_image = invert_image
self.gamma_range = gamma_range
self.epsilon = epsilon
self.per_channel = per_channel
self.retain_stats = retain_stats
def __call__(self, img_and_mask: Tuple[np.ndarray, np.ndarray, np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
data_sample, seg_mask, mask = img_and_mask
if self.invert_image:
data_sample = - data_sample
if not self.per_channel:
if self.retain_stats:
mn = data_sample.mean()
sd = data_sample.std()
if np.random.random() < 0.5 and self.gamma_range[0] < 1:
gamma = np.random.uniform(self.gamma_range[0], 1)
else:
gamma = np.random.uniform(max(self.gamma_range[0], 1), self.gamma_range[1])
minm = data_sample.min()
rnge = data_sample.max() - minm
data_sample = np.power(((data_sample - minm) / float(rnge + self.epsilon)), gamma) * rnge + minm
if self.retain_stats:
data_sample = data_sample - data_sample.mean() + mn
data_sample = data_sample / (data_sample.std() + 1e-8) * sd
else:
for c in range(data_sample.shape[0]):
if self.retain_stats:
mn = data_sample[c].mean()
sd = data_sample[c].std()
if np.random.random() < 0.5 and self.gamma_range[0] < 1:
gamma = np.random.uniform(self.gamma_range[0], 1)
else:
gamma = np.random.uniform(max(self.gamma_range[0], 1), self.gamma_range[1])
minm = data_sample[c].min()
rnge = data_sample[c].max() - minm
data_sample[c] = np.power(((data_sample[c] - minm) / float(rnge + self.epsilon)), gamma) * float(
rnge + self.epsilon) + minm
if self.retain_stats:
data_sample[c] = data_sample[c] - data_sample[c].mean() + mn
data_sample[c] = data_sample[c] / (data_sample[c].std() + 1e-8) * sd
if self.invert_image:
data_sample = - data_sample
return data_sample, seg_mask, mask
class ChannelTranslation():
"""Simulates badly aligned color channels/modalities by shifting them against each other
Args:
const_channel: Which color channel is constant? The others are shifted
max_shifts (dict {'x':2, 'y':2, 'z':2}): How many pixels should be shifted for each channel?
"""
def __init__(self, const_channel=0, max_shifts=None, data_key="data", label_key="seg"):
self.data_key = data_key
self.label_key = label_key
self.max_shift = max_shifts
self.const_channel = const_channel
def augment_channel_translation(self, data, const_channel=0, max_shifts=None):
if max_shifts is None:
max_shifts = {'z': 2, 'y': 2, 'x': 2}
shape = data.shape
const_data = data[:, [const_channel]]
trans_data = data[:, [i for i in range(shape[1]) if i != const_channel]]
# iterate the batch dimension
for j in range(shape[0]):
slice = trans_data[j]
ixs = {}
pad = {}
if len(shape) == 5:
dims = ['z', 'y', 'x']
else:
dims = ['y', 'x']
# iterate the image dimensions, randomly draw shifts/translations
for i, v in enumerate(dims):
rand_shift = np.random.choice(list(range(-max_shifts[v], max_shifts[v], 1)))
if rand_shift > 0:
ixs[v] = {'lo': 0, 'hi': -rand_shift}
pad[v] = {'lo': rand_shift, 'hi': 0}
else:
ixs[v] = {'lo': abs(rand_shift), 'hi': shape[2 + i]}
pad[v] = {'lo': 0, 'hi': abs(rand_shift)}
# shift and pad so as to retain the original image shape
if len(shape) == 5:
slice = slice[:, ixs['z']['lo']:ixs['z']['hi'], ixs['y']['lo']:ixs['y']['hi'],
ixs['x']['lo']:ixs['x']['hi']]
slice = np.pad(slice, ((0, 0), (pad['z']['lo'], pad['z']['hi']), (pad['y']['lo'], pad['y']['hi']),
(pad['x']['lo'], pad['x']['hi'])),
mode='constant', constant_values=(0, 0))
if len(shape) == 4:
slice = slice[:, ixs['y']['lo']:ixs['y']['hi'], ixs['x']['lo']:ixs['x']['hi']]
slice = np.pad(slice, ((0, 0), (pad['y']['lo'], pad['y']['hi']), (pad['x']['lo'], pad['x']['hi'])),
mode='constant', constant_values=(0, 0))
trans_data[j] = slice
data_return = np.concatenate([const_data, trans_data], axis=1)
return data_return
def __call__(self, img_and_mask: Tuple[np.ndarray, np.ndarray, np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
data_sample, seg_mask, mask = img_and_mask
ret_val = self.augment_channel_translation(data=data_sample, const_channel=self.const_channel, max_shifts=self.max_shift)
data = ret_val[0]
return data, seg_mask, mask