[basics] train_flag: false compute_patches: false resume: false test_flag: true uncertainty_flag: true plot: false tensorboard_logs: tensorboard_logs/ [uncertainty] n_iterations: 20 # uncertainty_type: ttd uncertainty_type: tta use_dropout: false [model] model_path_local: /Users/lauramora/Documents/MASTER/TFM/Code/BrainTumorSegmentation/results/checkpoints/last_models/ model_path_server: /mnt/gpid07/users/laura.mora/results/checkpoints/ # newer checks! # checkpoint: last_models/checkpoint_epoch_349_val_loss_0.33079595190204986_dice_0.6692040464649461.pth # checkpoint: model_1598640005/checkpoint_epoch_168_val_loss_0.20105469390137554_dice_0.7989453060986245.pth # checkpoint: model_1598639885/checkpoint_epoch_198_val_loss_0.19342842820572526_dice_0.8065715717942747.pth checkpoint: model_1598640035/checkpoint_epoch_142_val_loss_0.21437616135976087_dice_0.7856238380039416.pth # checkpoint: model_1598550861/checkpoint_epoch_215_val_loss_0.2378825504485875_dice_0.7621174487349105.pth # checkpoint: model_1598651693/checkpoint_epoch_297_val_loss_0.3553243059001557_dice_0.644675692108026.pth # checkpoint: model_1598651693/checkpoint_epoch_316_val_loss_0.33101850666411936_dice_0.6689814933358806.pth loss: gdl eval_regions: false init_features_maps: 32 n_epochs: 100 # network: 3dunet network: 3dunet_residual # network: vnet_asymm # unet unet_order: crg # cli - conv + LeakyReLU + instancenorm # vnet asymm non_linearity: relu kernel_size: 3 padding: 1 # vnet use_elu: true # optimizer optimizer: ADAM learning_rate: 1e-4 weight_decay: 1e-5 ## sgd only momentum: 0.99 # scheduler LR scheduler: true patience: 30 ## by a factor of 5 lr_decay: 0.2 [dataset] dataset_root_path_server: /mnt/gpid07/users/laura.mora/datasets/2020/ dataset_root_path_local: /Users/lauramora/Documents/MASTER/TFM/Data/2020/ dataset_train_folder: train dataset_val_folder: validation dataset_test_folder: test train_csv: brats20_data.csv test_csv: brats20_data.csv val_csv: brats20_val.csv classes: 4 n_modalities: 4 # Use dataloader batch_size: 2 lgg_only: false # If using sampler n_patients_per_batch: 8 n_patches: 1 # source_sampling: src.dataset.patching.centered_crop_patch # source_sampling: src.dataset.patching.random_tumor_distribution source_sampling: src.dataset.patching.no_patch # sampling_method: src.dataset.patching.no_patch sampling_method: src.dataset.patching.random_tumor_distribution # sampling_method: src.dataset.patching.random_distribution # sampling_method: src.dataset.patching.binary_distribution patch_size: 64 64 64