import streamlit as st
import tensorflow as tf
from tensorflow.keras.utils import load_img, img_to_array, array_to_img
from skimage import filters
from PIL import Image
import numpy as np
import plotly.express as px
import os
import base64
import shutil
import gdown
import pandas as pd
def modelsCheck():
# SET SESSION STATE
st.session_state.existing_models = {
'UNet' : '1zkvSyAAhG2zWZh2fLt-Gg5GFiDyo0X04',
'UNet++' : '1--55QSoelNuMpzNmCTd_ksdCnTnZznWA',
'R2UNet' : '1nuUI26UdTNWVVqZEiOV5CmjcSR7HP5UA',
'AttUNet' : '1aIKJpKm_SOZWmo9Mqp2z97np16Fs2txq',
}
models_and_url_id = st.session_state.existing_models
isModelsExist = []
for model_name in models_and_url_id.keys():
folder_path = 'models/{}/'.format(model_name)
model_filename = model_name + '.h5'
isModelExist = os.path.isfile(os.path.join(folder_path, model_filename))
isModelsExist.append(isModelExist)
if False in isModelsExist:
# HAVE TO UPDATE THE URL IF MODEL UPDATED IN COLAB
for name, model_url_id in zip(models_and_url_id.keys(), models_and_url_id.values()):
save_path = 'models/{}/{}.h5'.format(name, name)
url = "https://drive.google.com/uc?id={}".format(model_url_id)
gdown.download(url, save_path, quiet=False)
def refreshImagesInFolder():
folder_path = 'results_images'
shutil.rmtree(folder_path, ignore_errors=True)
os.makedirs(folder_path, exist_ok=True)
model_folders = st.session_state.existing_models.keys()
image_folders = ["ori_images", "mask_images", "line_mask_images", "merge_images", "segmented_images"]
for model_folder in model_folders:
model_folder_path = os.path.join(folder_path, model_folder)
os.makedirs(model_folder_path, exist_ok=True)
for image_folder in image_folders:
image_folder_path = os.path.join(model_folder_path, image_folder)
os.makedirs(image_folder_path, exist_ok=True)
def createSegmentation(model, image_arr):
# Image Array
image_arr_reshape = image_arr[np.newaxis, ...] # Reshape menjadi (1, width, height, channel) agar bisa predict
# Model Predict Tensorflow
mask_arr = model.predict(image_arr_reshape, verbose=0)
# Create Segmented Images
segmented_image_arr = image_arr * mask_arr[0]
# Create Line Segmentation
line_mask_arr = filters.sobel(mask_arr[0])
# Convert Image to uint8
image_arr_uint8 = (image_arr*255).astype(np.uint8)
line_mask_arr_uint8 = (line_mask_arr*255).astype(np.uint8)
# Convert Image to PIL
image_pil = Image.fromarray(image_arr_uint8[:, :, 0])
line_mask_pil = Image.fromarray(line_mask_arr_uint8[:, :, 0])
# Convert image to RGBA
line_mask_pil_rgba = line_mask_pil.convert("RGBA")
image_pil_rgba = image_pil.convert("RGBA")
# Convert image to tuple data
line_mask_pil_data = line_mask_pil_rgba.getdata()
image_pil_data = image_pil_rgba.getdata()
image_result = []
for mask_line_channels, image_channels in zip(line_mask_pil_data, image_pil_data):
if mask_line_channels != (0, 0, 0, 255):
image_channels = list(image_channels)
image_channels[0] = int((image_channels[0] + 180) / 2)
image_channels[1] = int((image_channels[1] + 0) / 2)
image_channels[2] = int((image_channels[2] + 0) / 2)
# image_channels[3] = 120
image_channels = tuple(image_channels)
image_channels = image_channels
image_result.append(image_channels)
else:
image_result.append(image_channels)
image_pil_rgba.putdata(image_result)
IMAGE = array_to_img(image_arr)
MASK = array_to_img(mask_arr[0])
LINE_MASK = image_pil_rgba
SEGMENTED_IMAGE = array_to_img(segmented_image_arr)
MERGE_IMAGE = Image.new('RGB', (256*3, 256))
MERGE_IMAGE.paste(IMAGE, (0, 0))
MERGE_IMAGE.paste(LINE_MASK, (256, 0))
MERGE_IMAGE.paste(MASK, (256*2, 0))
return IMAGE, MASK, LINE_MASK, MERGE_IMAGE, SEGMENTED_IMAGE
def getArrImages():
images_arr = []
if st.session_state.input_selected == 'camera':
image_session = st.session_state.images
image = load_img(image_session, color_mode='grayscale')
width, height = image.size
# Set coordinat to crop image
left = (width/2) - (height/2)
top = 0
right = (width/2) + (height/2)
bottom = height
# Cut image at center coordinate
cropped_image = image.crop((left, top, right, bottom))
cropped_image_resize = cropped_image.resize((256, 256))
image_arr = img_to_array(cropped_image_resize).astype('float32') / 255.0
images_arr.append(image_arr)
else:
images_session = st.session_state.images
for image_session in images_session:
image = load_img(image_session, color_mode='grayscale', target_size=(256, 256))
image_arr = img_to_array(image).astype('float32') / 255.0
images_arr.append(image_arr)
return np.array(images_arr)
def saveSegmentation():
# Refresh or Delete All Images In Directory
refreshImagesInFolder()
# Get Images Array
images_arr = getArrImages()
# Get Used Model from Session
used_model = st.session_state.used_model
if used_model == 'All Models At Once':
models = st.session_state.existing_models.keys()
for model_name in models:
model = tf.keras.models.load_model('./models/{}/{}.h5'.format(model_name, model_name), compile=False)
for i, image_arr in enumerate(images_arr):
ori_image, mask_image, line_mask_image, merge_image, segmented_image = createSegmentation(model, image_arr)
# Save Image to Directory
_ = ori_image.save("results_images/{}/ori_images/".format(model_name) + "{}_ori_{}".format(model_name, i+1)+".bmp") # image
_ = mask_image.save("results_images/{}/mask_images/".format(model_name) + "{}_mask_{}".format(model_name, i+1)+".bmp") # mask
_ = line_mask_image.save("results_images/{}/line_mask_images/".format(model_name) + "{}_line_{}".format(model_name, i+1)+".bmp") # line_mask
_ = merge_image.save("results_images/{}/merge_images/".format(model_name) + "{}_merge_{}".format(model_name, i+1)+".bmp") # merge_image
_ = segmented_image.save("results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, i+1)+".bmp") # merge_image
else:
model_name = used_model.split()[0]
model = tf.keras.models.load_model('./models/{}/{}.h5'.format(model_name, model_name), compile=False)
for i, image_arr in enumerate(images_arr):
ori_image, mask_image, line_mask_image, merge_image, segmented_image = createSegmentation(model, image_arr)
# Save Image to Directory
_ = ori_image.save("results_images/{}/ori_images/".format(model_name) + "{}_ori_{}".format(model_name, i+1)+".bmp") # image
_ = mask_image.save("results_images/{}/mask_images/".format(model_name) + "{}_mask_{}".format(model_name, i+1)+".bmp") # mask
_ = line_mask_image.save("results_images/{}/line_mask_images/".format(model_name) + "{}_line_{}".format(model_name, i+1)+".bmp") # line_mask
_ = merge_image.save("results_images/{}/merge_images/".format(model_name) + "{}_merge_{}".format(model_name, i+1)+".bmp") # merge_image
_ = segmented_image.save("results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, i+1)+".bmp") # segmented_image
def showImageMarkdown(path):
image = open(path, "rb")
contents = image.read()
data_url = base64.b64encode(contents).decode("utf-8")
image.close()
st.markdown( f'<p style="text-align: center;"><img src="data:image/gif;base64,{data_url}" alt="results_images"></p>', unsafe_allow_html=True)
def showSegmentationFromCamera():
# Get Used Model from Session
used_model = st.session_state.used_model
# Process All Models At Once
if used_model == 'All Models At Once':
model_names = st.session_state.existing_models.keys()
for model_name in model_names:
# MODEL TITLE
st.markdown("<h4 style='text-align: center; margin-top:15px'>Segmented Images With {}</h4>".format(model_name), unsafe_allow_html=True)
image_path = "results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, 1)+".bmp"
buff1, col, buff2 = st.columns([1, 1, 1])
# SHOW RESULTS OF IMAGES
with col:
showImageMarkdown(image_path)
buff1, col, buff2 = st.columns([2.3, 2, 2])
# SHOW DOWNLOAD
with col:
downloadSegmentedImage(model_name)
# Process 1 Model
else:
model_name = used_model.split()[0]
# MODEL TITLE
st.markdown("<h4 style='text-align: center; margin-top:15px'>Segmented Images With {}</h4>".format(model_name), unsafe_allow_html=True)
image_path = "results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, 1)+".bmp"
buff1, col, buff2 = st.columns([1, 1, 1])
# SHOW RESULTS OF IMAGES
with col:
showImageMarkdown(image_path)
buff1, col, buff2 = st.columns([2.3, 2, 2])
# SHOW DOWNLOAD
with col:
downloadSegmentedImage(model_name)
def showSegmentationFromFileUploader():
# Get Used Model from Session
used_model = st.session_state.used_model
# Process All Models At Once
if used_model == 'All Models At Once':
model_names = st.session_state.existing_models.keys()
for model_name in model_names:
# MODEL TITLE
st.markdown("<h4 style='text-align: center; margin-top:15px'>Segmented Images With {}</h4>".format(model_name), unsafe_allow_html=True)
cols = st.columns([1, 1, 1])
# SHOW RESULTS OF IMAGES
for i in range(len(st.session_state.images)):
if i == 3:
break
with cols[i]:
image_path = "results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, i+1)+".bmp"
showImageMarkdown(image_path)
# SHOW DOWNLOAD
buff1, col, buff2 = st.columns([2.4, 2, 2])
with col:
downloadSegmentationResults(model_name)
else:
model_name = used_model.split()[0]
# MODEL TITLE
st.markdown("<h4 style='text-align: center; margin-top:15px'>Segmented Images With {}</h4>".format(model_name), unsafe_allow_html=True)
cols = st.columns([1, 1, 1])
# SHOW RESULTS OF IMAGES
for i in range(len(st.session_state.images)):
if i == 3:
break
with cols[i]:
image_path = "results_images/{}/segmented_images/".format(model_name) + "{}_segmented_{}".format(model_name, i+1)+".bmp"
showImageMarkdown(image_path)
# SHOW DOWNLOAD
buff1, col, buff2 = st.columns([2.4, 2, 2])
with col:
downloadSegmentationResults(model_name)
def zippingImage(model_name):
folder_path = 'results_images/{}'.format(model_name)
save_zip_path = 'results_images/results_images_{}'.format(model_name)
shutil.make_archive(save_zip_path, 'zip', folder_path)
def downloadSegmentedImage(model_name):
st.download_button(label='Download Segmented Image {}'.format(model_name),
data= open('results_images/{}/segmented_images/{}_segmented_1.bmp'.format(model_name, model_name), 'rb').read(),
file_name='results_image_{}.bmp'.format(model_name),
mime='image/bmp')
def downloadSegmentationResults(model_name):
zippingImage(model_name)
st.download_button(label='Download All Images {}'.format(model_name),
data= open('results_images/results_images_{}.zip'.format(model_name), 'rb').read(),
file_name='results_images_{}.zip'.format(model_name),
mime='application/zip')
def getEvaluationDF():
models = st.session_state.existing_models
evaluation_df = pd.DataFrame(columns=['Model', 'IoU', 'Time (s)', 'Trainable Params (M)'])
for model_name in models:
# Get CSV
model_csv_logger = pd.read_csv('./models/{}/csv_logger_{}.csv'.format(model_name, model_name))
# Get IoU and Testing Timein CSV
test_iou = float("{:.3f}".format(model_csv_logger.iloc[-1]['test_iou']))
testing_time = float("{:.3f}".format(model_csv_logger.iloc[-1]['testing_time']))
trainable_params = model_csv_logger.iloc[-1]['trainable_params']
# Put model_name and ioU in DataFrame
evaluation_df.loc[len(evaluation_df.index)] = [model_name, test_iou, testing_time, trainable_params]
evaluation_df = evaluation_df.sort_values(by=['Trainable Params (M)'])
# Start index from 1
evaluation_df.index = np.arange(1, len(evaluation_df) + 1)
return evaluation_df
def createPlotEvaluation(df):
df_sorted = df.sort_values(by='IoU')
# Plotting
fig = px.scatter(df_sorted, x='Model', y='IoU', size='Time (s)', color='Trainable Params (M)',
hover_data=['Time (s)', 'Trainable Params (M)'], title='Model Evaluation')
# Line plot
fig.add_trace(px.line(df_sorted, x='Model', y='IoU').data[0])
# Customize the plot
fig.update_layout(
xaxis=dict(title='Model'),
yaxis=dict(title='IoU'),
coloraxis=dict(colorbar=dict(title='Trainable Params (M)')),
)
# Show the plot
st.plotly_chart(fig)