[3ee609]: / tests / test_model_executor.py

Download this file

420 lines (378 with data), 18.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# -*- coding: utf-8 -*-
# ! /usr/bin/env python
""" main test script to test the primary functions/classes/methods. """
# run with python -m tests.test_generator
import glob
import logging
import os
import shutil
import sys
import pytest
import torch
# import unittest
# Set the logging level depending on the level of detail you would like to have in the logs while running the tests.
LOGGING_LEVEL = logging.INFO # WARNING # logging.INFO
models_with_args = [
(
"00001_DCGAN_MMG_CALC_ROI",
{},
100,
), # 100 samples to test automatic batch-wise image generation in model_executor
(
"00002",
{},
3,
), # "00002" instead of "00002_DCGAN_MMG_MASS_ROI" to test shortcut model_ids
(
"03",
{"translate_all_images": False},
2,
), # "03" instead of "00003_CYCLEGAN_MMG_DENSITY_FULL" to test shortcut model_ids
(
4, # 4 instead of "00004_PIX2PIX_MMG_MASSES_W_MASKS" to test shortcut model_ids
{
"shapes": ["oval"],
"ssim_threshold": 0.18,
"image_size": [128, 128],
"patch_size": [30, 30],
},
3,
),
("00005_DCGAN_MMG_MASS_ROI", {}, 3),
("00006_WGANGP_MMG_MASS_ROI", {}, 3),
(
"00007_INPAINT_BRAIN_MRI",
{
"image_size": (256, 256),
"num_inpaints_per_sample": 2,
"randomize_input_image_order": False,
"add_variations_to_mask": False,
"x_center": 120,
"y_center": 140,
"radius_1": 8,
"radius_2": 12,
"radius_3": 24,
},
3,
),
(
"00008_C-DCGAN_MMG_MASSES",
{"condition": 0, "is_cbisddsm_training_data": False},
3,
),
("00009_PGGAN_POLYP_PATCHES_W_MASKS", {"save_option": "image_only"}, 3),
("00010_FASTGAN_POLYP_PATCHES_W_MASKS", {"save_option": "image_only"}, 3),
# ("00011_SINGAN_POLYP_PATCHES_W_MASKS", {"checkpoint_ids": [999]}, 3), # removed after successful testing due to limited CI pipeline capacity
# ("00012_C-DCGAN_MMG_MASSES", {"condition": 0}, 3), # removed after successful testing due to limited CI pipeline capacity
# ("00013_CYCLEGAN_MMG_DENSITY_OPTIMAM_MLO", {"translate_all_images": False}, 2), # removed after successful testing due to limited CI pipeline capacity
# ("00014_CYCLEGAN_MMG_DENSITY_OPTIMAM_CC", {"translate_all_images": False}, 2), # removed after successful testing due to limited CI pipeline capacity
# ("00015_CYCLEGAN_MMG_DENSITY_CSAW_MLO", {"translate_all_images": False}, 2), # removed after successful testing due to limited CI pipeline capacity
# ("00016_CYCLEGAN_MMG_DENSITY_CSAW_CC", {"translate_all_images": False}, 2), # removed after successful testing due to limited CI pipeline capacity
("00017_DCGAN_XRAY_LUNG_NODULES", {}, 3),
("00018_WGANGP_XRAY_LUNG_NODULES", {}, 3),
("00019_PGGAN_CHEST_XRAY", {}, 3),
("00020_PGGAN_CHEST_XRAY", {"resize_pixel_dim": 512, "image_size": 256}, 3),
(
"00021_CYCLEGAN_BRAIN_MRI_T1_T2",
{
"input_path": "models/00021_CYCLEGAN_Brain_MRI_T1_T2/inputs/T2",
"gpu_id": 0,
"T1_to_T2": False,
},
3,
),
("00022_WGAN_CARDIAC_AGING", {}, 3),
(
"00023_PIX2PIXHD_BREAST_DCEMRI",
{
"input_path": "input",
"gpu_id": 0,
"image_size": 448,
},
3,
),
]
# class TestMediganExecutorMethods(unittest.TestCase):
class TestMediganExecutorMethods:
def setup_class(self):
## unittest logger config
# This logger on root level initialized via logging.getLogger() will also log all log events
# from the medigan library. Pass a logger name (e.g. __name__) instead if you only want logs from tests.py
self.logger = logging.getLogger() # (__name__)
self.logger.setLevel(LOGGING_LEVEL)
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(LOGGING_LEVEL)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
self.logger.addHandler(stream_handler)
self.test_output_path = "test_output_path"
self.num_samples = 2
self.test_imports_and_init_generators(self)
self._remove_dir_and_contents(self) # in case something is left there.
self.model_ids = self.generators.config_manager.model_ids
def test_imports_and_init_generators(self):
from src.medigan.constants import (
CONFIG_FILE_KEY_EXECUTION,
CONFIG_FILE_KEY_GENERATE,
CONFIG_FILE_KEY_GENERATE_ARGS_INPUT_LATENT_VECTOR_SIZE,
)
from src.medigan.generators import Generators
self.generators = Generators()
self.CONFIG_FILE_KEY_EXECUTION = CONFIG_FILE_KEY_EXECUTION
self.CONFIG_FILE_KEY_GENERATE = CONFIG_FILE_KEY_GENERATE
self.CONFIG_FILE_KEY_GENERATE_ARGS_INPUT_LATENT_VECTOR_SIZE = (
CONFIG_FILE_KEY_GENERATE_ARGS_INPUT_LATENT_VECTOR_SIZE
)
@pytest.mark.parametrize("models_with_args", [models_with_args])
def test_sample_generation_methods(self, models_with_args: list):
self.logger.debug(f"models: {models_with_args}")
for i, model_id in enumerate(self.model_ids):
# if (
# model_id != "00011_SINGAN_POLYP_PATCHES_W_MASKS"
# ):
## avoiding full memory on Windows ci test server
# continue
self.logger.debug(f"Now testing model {model_id}")
self._remove_dir_and_contents() # Already done in each test independently, but to be sure, here again.
self.test_generate_method(model_id=model_id)
# Check if args available fo model_id. Note: The models list may not include the latest medigan models
for model in models_with_args:
if model_id == model[0]:
self.test_generate_method_with_additional_args(
model_id=model[0], args=model[1], expected_num_samples=model[2]
)
self.test_get_generate_method(model_id=model_id)
self.test_get_dataloader_method(model_id=model_id)
# if i == 16: # just for local testing
# self._remove_model_dir_and_zip(
# model_ids=[model_id], are_all_models_deleted=False
# )
@pytest.mark.parametrize(
"values_list, should_sample_be_generated",
[
(["dcgan", "mMg", "ClF", "modality", "inbreast"], True),
(["dcgan", "mMg", "ClF", "modality", "optimam"], True),
(["dcgan", "mMg", "ClF", "modalities"], False),
],
)
def test_find_model_and_generate_method(
self, values_list, should_sample_be_generated
):
self._remove_dir_and_contents()
self.generators.find_model_and_generate(
values=values_list,
target_values_operator="AND",
are_keys_also_matched=True,
is_case_sensitive=False,
num_samples=self.num_samples,
output_path=self.test_output_path,
)
self._check_if_samples_were_generated(
should_sample_be_generated=should_sample_be_generated
)
@pytest.mark.parametrize(
"values_list, metric",
[
(["dcgan", "MMG"], "CLF.trained_on_real_and_fake.f1"),
(["dcgan", "MMG"], "turing_test.AUC"),
],
)
def test_find_and_rank_models_then_generate_method(self, values_list, metric):
self._remove_dir_and_contents()
# TODO This test needs the respective metrics for any of these models to be available in config/global.json.
# These values would need to find at least two models.
self.generators.find_models_rank_and_generate(
values=values_list,
target_values_operator="AND",
are_keys_also_matched=True,
is_case_sensitive=False,
metric=metric,
order="asc",
num_samples=self.num_samples,
output_path=self.test_output_path,
)
self._check_if_samples_were_generated()
# @pytest.mark.parametrize("model_id", [model[0] for model in models_with_args])
@pytest.mark.skip
def test_generate_method(self, model_id):
self._remove_dir_and_contents()
self.generators.generate(
model_id=model_id,
num_samples=self.num_samples,
output_path=self.test_output_path,
install_dependencies=True,
)
self._check_if_samples_were_generated(model_id=model_id)
# @pytest.mark.parametrize("model_id, args, expected_num_samples", models_with_args)
@pytest.mark.skip
def test_generate_method_with_additional_args(
self, model_id, args, expected_num_samples
):
self._remove_dir_and_contents()
self.generators.generate(
model_id=model_id,
num_samples=expected_num_samples,
output_path=self.test_output_path,
**args,
)
self._check_if_samples_were_generated(
model_id=model_id, num_samples=expected_num_samples
)
# @pytest.mark.parametrize("model_id", [model[0] for model in models_with_args])
@pytest.mark.skip
def test_get_generate_method(self, model_id):
self._remove_dir_and_contents()
gen_function = self.generators.get_generate_function(
model_id=model_id,
num_samples=self.num_samples,
output_path=self.test_output_path,
)
gen_function()
self._check_if_samples_were_generated(model_id=model_id)
del gen_function
# @pytest.mark.parametrize("model_id", [model[0] for model in models_with_args])
@pytest.mark.skip
def test_get_dataloader_method(self, model_id):
self._remove_dir_and_contents()
data_loader = self.generators.get_as_torch_dataloader(
model_id=model_id, num_samples=self.num_samples
)
self.logger.debug(f"{model_id}: len(data_loader): {len(data_loader)}")
if len(data_loader) != self.num_samples:
logging.warning(
f"{model_id}: The number of samples in the dataloader (={len(data_loader)}) is not equal the number of samples requested (={self.num_samples}). "
f"Hint: Revise if the model's internal generate() function returned tuples as required in get_as_torch_dataloader()."
)
#### Get the object at index 0 from the dataloader
data_dict = next(iter(data_loader))
# Test if the items at index [0] of the aforementioned object is of type torch tensor (e.g. torch.uint8) and not None, as expected by data structure design decision.
assert torch.is_tensor(data_dict.get("sample"))
# Test if the items at index [1], [2] of the aforementioned object are None and, if not, whether they are of type torch tensor, as expected
assert data_dict.get("mask") is None or torch.is_tensor(data_dict.get("mask"))
assert data_dict.get("other_imaging_output") is None or torch.is_tensor(
data_dict.get("other_imaging_output")
)
# Test if the items at index [3] of the aforementioned object is None and, if not, whether it is of type list of strings, as expected.
assert data_dict.get("label") is None or (
isinstance(data_dict.get("label"), list)
and isinstance(data_dict.get("label")[0], str)
)
del data_dict
del data_loader
# @pytest.mark.parametrize("model_id", [model[0] for model in models_with_args])
@pytest.mark.skip
def test_visualize_method(self, model_id):
if (
self.CONFIG_FILE_KEY_GENERATE_ARGS_INPUT_LATENT_VECTOR_SIZE
in self.generators.config_manager.config_dict[model_id][
self.CONFIG_FILE_KEY_EXECUTION
][self.CONFIG_FILE_KEY_GENERATE]
):
self.generators.visualize(model_id, auto_close=True)
else:
with pytest.raises(Exception) as e:
self.generators.visualize(model_id, auto_close=True)
assert e.type == ValueError
@pytest.mark.skip
def _check_if_samples_were_generated(
self, model_id=None, num_samples=None, should_sample_be_generated: bool = True
):
# check if the number of generated samples of model_id_1 is as expected.
file_list = glob.glob(self.test_output_path + "/*")
self.logger.debug(f"{model_id}: {len(file_list)} == {self.num_samples} ?")
if num_samples is None:
num_samples = self.num_samples
if should_sample_be_generated:
assert (
len(file_list) == num_samples
or len(file_list)
== num_samples
* 2
* 6 # 00007_INPAINT_BRAIN_MRI: 2 inpaints per sample, 6 outputs per sample
or len(file_list)
== num_samples * 2 # Temporary fix for different outputs per model.
or len(file_list) == num_samples + 1
), f"Model {model_id} generated {len(file_list)} samples instead of the expected {num_samples}, {num_samples*2*6}, or {num_samples + 1}."
# Some models are balanced per label by default: If num_samples is odd, then len(file_list)==num_samples +1
else:
assert len(file_list) == 0
# @pytest.mark.skip
def _remove_dir_and_contents(self):
"""After each test, empty the created folders and files to avoid corrupting a new test."""
try:
shutil.rmtree(self.test_output_path)
except OSError as e:
# This may give an error if the folders are not created.
self.logger.debug(
f"Exception while trying to delete folder. Likely it simply had not yet been created: {e}"
)
except Exception as e2:
self.logger.error(f"Error while trying to delete folder: {e2}")
@pytest.mark.skip
def _remove_model_dir_and_zip(
self, model_ids=[], are_all_models_deleted: bool = False
):
"""After a specific model folders, model_executor, and model zip file to avoid running out-of-disk space."""
try:
for i, model_executor in enumerate(self.generators.model_executors):
if are_all_models_deleted or (
model_ids is not None and model_executor.model_id in model_ids
):
try:
# Delete the folder containing the model
model_path = os.path.dirname(
model_executor.deserialized_model_as_lib.__file__
)
shutil.rmtree(model_path)
self.logger.info(
f"Deleted directory of model {model_executor.model_id}. ({model_path})"
)
except OSError as e:
# This may give an error if the FOLDER is not present
self.logger.warning(
f"Exception while trying to delete the model folder of model {model_executor.model_id}: {e}"
)
try:
# If the downloaded zip package of the model was not deleted inside the model_path, we explicitely delete it now.
if model_executor.package_path.is_file():
os.remove(model_executor.package_path)
self.logger.info(
f"Deleted zip file of model {model_executor.model_id}. ({model_executor.package_path})"
)
except Exception as e:
self.logger.warning(
f"Exception while trying to delete the ZIP file ({model_executor.package_path}) of model {model_executor.model_id}: {e}"
)
# Deleting the stateful model_executors instantiated by the generators module, after deleting folders and zips
if are_all_models_deleted:
self.generators.model_executors.clear()
else:
if model_ids is not None:
for model_id in model_ids:
model_executor = self.generators.find_model_executor_by_id(
model_id
)
if model_executor is not None:
self.generators.model_executors.remove(model_executor)
del model_executor
except Exception as e2:
self.logger.error(
f"Error while trying to delete model folders and zips: {e2}"
)
# @pytest.fixture(scope="session", autouse=True)
def teardown_class(self):
"""After all tests, empty the large model folders, model_executors, and zip files to avoid running out-of-disk space."""
# yield is at test-time, signaling that things after yield are run after the execution of the last test has terminated
# https://docs.pytest.org/en/7.1.x/reference/reference.html?highlight=fixture#pytest.fixture
# yield None
# Remove all test outputs in test_output_path
self._remove_dir_and_contents(self)
# Remove all model folders, zip files and model executors
# self._remove_model_dir_and_zip(
# self, model_ids=["00006_WGANGP_MMG_MASS_ROI"], are_all_models_deleted=False
# ) # just for local testing
# self._remove_model_dir_and_zip(
# self, model_ids=None, are_all_models_deleted=True
# )