|
a |
|
b/tests/test_model_selector.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
# ! /usr/bin/env python |
|
|
3 |
""" main test script to test the primary functions/classes/methods. """ |
|
|
4 |
# run with python -m tests.test_model_selector |
|
|
5 |
|
|
|
6 |
import logging |
|
|
7 |
import sys |
|
|
8 |
|
|
|
9 |
import pytest |
|
|
10 |
|
|
|
11 |
# import unittest |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
# Set the logging level depending on the level of detail you would like to have in the logs while running the tests. |
|
|
15 |
LOGGING_LEVEL = logging.INFO # WARNING # logging.INFO |
|
|
16 |
|
|
|
17 |
models = [ |
|
|
18 |
( |
|
|
19 |
"00001_DCGAN_MMG_CALC_ROI", |
|
|
20 |
{}, |
|
|
21 |
100, |
|
|
22 |
), |
|
|
23 |
("00002_DCGAN_MMG_MASS_ROI", {}, 3), |
|
|
24 |
("00003_CYCLEGAN_MMG_DENSITY_FULL", {"translate_all_images": False}, 2), |
|
|
25 |
("00005_DCGAN_MMG_MASS_ROI", {}, 3), |
|
|
26 |
# Further models can be added here if/when needed. |
|
|
27 |
] |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
# class TestMediganSelectorMethods(unittest.TestCase): |
|
|
31 |
class TestMediganSelectorMethods: |
|
|
32 |
def setup_method(self): |
|
|
33 |
## unittest logger config |
|
|
34 |
# This logger on root level initialized via logging.getLogger() will also log all log events |
|
|
35 |
# from the medigan library. Pass a logger name (e.g. __name__) instead if you only want logs from tests.py |
|
|
36 |
self.logger = logging.getLogger() # (__name__) |
|
|
37 |
self.logger.setLevel(LOGGING_LEVEL) |
|
|
38 |
stream_handler = logging.StreamHandler(sys.stdout) |
|
|
39 |
stream_handler.setLevel(LOGGING_LEVEL) |
|
|
40 |
formatter = logging.Formatter( |
|
|
41 |
"%(asctime)s - %(name)s - %(levelname)s - %(message)s" |
|
|
42 |
) |
|
|
43 |
stream_handler.setFormatter(formatter) |
|
|
44 |
self.logger.addHandler(stream_handler) |
|
|
45 |
self.test_init_generators() |
|
|
46 |
|
|
|
47 |
def test_init_generators(self): |
|
|
48 |
from src.medigan.generators import Generators |
|
|
49 |
|
|
|
50 |
self.generators = Generators() |
|
|
51 |
|
|
|
52 |
@pytest.mark.parametrize( |
|
|
53 |
"values_list", |
|
|
54 |
[ |
|
|
55 |
(["dcgan", "mMg", "ClF", "modality"]), |
|
|
56 |
(["DCGAN", "Mammography"]), |
|
|
57 |
], |
|
|
58 |
) |
|
|
59 |
def test_search_for_models_method(self, values_list): |
|
|
60 |
found_models = self.generators.find_matching_models_by_values( |
|
|
61 |
values=values_list, |
|
|
62 |
target_values_operator="AND", |
|
|
63 |
are_keys_also_matched=True, |
|
|
64 |
is_case_sensitive=False, |
|
|
65 |
) |
|
|
66 |
self.logger.debug( |
|
|
67 |
f"For value {values_list}, these models were found: {found_models}" |
|
|
68 |
) |
|
|
69 |
assert len(found_models) > 0 |
|
|
70 |
|
|
|
71 |
@pytest.mark.parametrize( |
|
|
72 |
"models, values_list, metric", |
|
|
73 |
[ |
|
|
74 |
( |
|
|
75 |
models, |
|
|
76 |
["dcgan", "MMG"], |
|
|
77 |
"CLF.trained_on_real_and_fake.f1", |
|
|
78 |
), |
|
|
79 |
(models, ["dcgan", "MMG"], "turing_test.AUC"), |
|
|
80 |
], |
|
|
81 |
) |
|
|
82 |
def test_find_and_rank_models_by_performance(self, models, values_list, metric): |
|
|
83 |
# These values would need to find at least two models. See metrics and values in the config/global.json file. |
|
|
84 |
found_ranked_models = self.generators.find_models_and_rank( |
|
|
85 |
values=values_list, |
|
|
86 |
target_values_operator="AND", |
|
|
87 |
are_keys_also_matched=True, |
|
|
88 |
is_case_sensitive=False, |
|
|
89 |
metric=metric, |
|
|
90 |
order="desc", |
|
|
91 |
) |
|
|
92 |
assert ( |
|
|
93 |
len(found_ranked_models) > 0 # some models were found as is expected |
|
|
94 |
and found_ranked_models[0]["model_id"] is not None # has a model id |
|
|
95 |
and ( |
|
|
96 |
len(found_ranked_models) < 2 |
|
|
97 |
or found_ranked_models[0][metric] > found_ranked_models[1][metric] |
|
|
98 |
) # descending order (the higher a model's value, the lower its index in the list) is working |
|
|
99 |
) |
|
|
100 |
|
|
|
101 |
@pytest.mark.parametrize( |
|
|
102 |
"models, metric, order", |
|
|
103 |
[ |
|
|
104 |
( |
|
|
105 |
models, |
|
|
106 |
"FID", |
|
|
107 |
"asc", |
|
|
108 |
), # Note: normally a lower FID is better, therefore asc (model with lowest FID has lowest result list index). |
|
|
109 |
( |
|
|
110 |
models, |
|
|
111 |
"FID_RADIMAGENET_ratio", |
|
|
112 |
"desc", # descending, as the higher the FID ratio the better. |
|
|
113 |
), |
|
|
114 |
# Note: normally a lower FID is better, therefore asc (model with lowest FID has lowest result list index). |
|
|
115 |
(models, "CLF.trained_on_real_and_fake.f1", "desc"), |
|
|
116 |
(models, "turing_test.AUC", "desc"), |
|
|
117 |
], |
|
|
118 |
) |
|
|
119 |
def test_rank_models_by_performance(self, models, metric, order): |
|
|
120 |
"""Ranking according to metrics in the config/global.json file.""" |
|
|
121 |
ranked_models = self.generators.rank_models_by_performance( |
|
|
122 |
model_ids=None, |
|
|
123 |
metric=metric, |
|
|
124 |
order=order, |
|
|
125 |
) |
|
|
126 |
assert ( |
|
|
127 |
len(ranked_models) > 0 # at least one model was found |
|
|
128 |
and ( |
|
|
129 |
len(ranked_models) >= 21 or metric != "FID" |
|
|
130 |
) # we should find at least 21 models with FID in medigan |
|
|
131 |
and ranked_models[0]["model_id"] |
|
|
132 |
is not None # found model has a model id (i.e. correctly formatted results) |
|
|
133 |
and ( |
|
|
134 |
len(ranked_models) == 1 |
|
|
135 |
or ( |
|
|
136 |
ranked_models[0][metric] > ranked_models[1][metric] |
|
|
137 |
or metric == "FID" |
|
|
138 |
) |
|
|
139 |
) # descending order (the higher a model's value, the lower its index in the list) is working. In case of FID it is the other way around (ascending order is better). |
|
|
140 |
) |
|
|
141 |
|
|
|
142 |
@pytest.mark.parametrize( |
|
|
143 |
"models, metric, order", |
|
|
144 |
[ |
|
|
145 |
(models, "CLF.trained_on_real_and_fake.f1", "desc"), |
|
|
146 |
(models, "turing_test.AUC", "desc"), |
|
|
147 |
], |
|
|
148 |
) |
|
|
149 |
def test_rank_models_by_performance_with_given_ids(self, models, metric, order): |
|
|
150 |
"""Ranking a specified set of models according to metrics in the config/global.json file.""" |
|
|
151 |
ranked_models = self.generators.rank_models_by_performance( |
|
|
152 |
model_ids=[models[1][0], models[2][0]], |
|
|
153 |
metric=metric, |
|
|
154 |
order=order, |
|
|
155 |
) |
|
|
156 |
assert 0 < len(ranked_models) <= 2 and ( |
|
|
157 |
len(ranked_models) < 2 |
|
|
158 |
or (ranked_models[0][metric] > ranked_models[1][metric]) |
|
|
159 |
) # checking if descending order (the higher a model's value, the lower its index in the list) is working. |
|
|
160 |
|
|
|
161 |
@pytest.mark.parametrize( |
|
|
162 |
"key1, value1, expected", |
|
|
163 |
[ |
|
|
164 |
("modality", "Full-Field Mammography", 2), |
|
|
165 |
("license", "BSD", 2), |
|
|
166 |
("performance.CLF.trained_on_real_and_fake.f1", "0.96", 0), |
|
|
167 |
("performance.turing_test.AUC", "0.56", 0), |
|
|
168 |
], |
|
|
169 |
) |
|
|
170 |
def test_get_models_by_key_value_pair(self, key1, value1, expected): |
|
|
171 |
found_models = self.generators.get_models_by_key_value_pair( |
|
|
172 |
key1=key1, value1=value1, is_case_sensitive=False |
|
|
173 |
) |
|
|
174 |
assert len(found_models) >= expected |