|
a |
|
b/examples/tutorial.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# MEDIGAN Quick start\n", |
|
|
8 |
"Quick introduction on how to choose the right model and generate images" |
|
|
9 |
] |
|
|
10 |
}, |
|
|
11 |
{ |
|
|
12 |
"cell_type": "code", |
|
|
13 |
"execution_count": null, |
|
|
14 |
"metadata": {}, |
|
|
15 |
"outputs": [], |
|
|
16 |
"source": [ |
|
|
17 |
"pip install medigan" |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"Import medigan and initialize Generators\n" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "code", |
|
|
29 |
"execution_count": null, |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [], |
|
|
32 |
"source": [ |
|
|
33 |
"from medigan import Generators\n", |
|
|
34 |
"generators = Generators()" |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
{ |
|
|
38 |
"cell_type": "markdown", |
|
|
39 |
"metadata": {}, |
|
|
40 |
"source": [ |
|
|
41 |
"Generate 10 samples using one of the medigan models\n" |
|
|
42 |
] |
|
|
43 |
}, |
|
|
44 |
{ |
|
|
45 |
"cell_type": "code", |
|
|
46 |
"execution_count": null, |
|
|
47 |
"metadata": {}, |
|
|
48 |
"outputs": [], |
|
|
49 |
"source": [ |
|
|
50 |
"generators.generate(model_id=\"00001_DCGAN_MMG_CALC_ROI\", num_samples=10)" |
|
|
51 |
] |
|
|
52 |
}, |
|
|
53 |
{ |
|
|
54 |
"cell_type": "markdown", |
|
|
55 |
"metadata": {}, |
|
|
56 |
"source": [ |
|
|
57 |
"Get the model's generate method and run it to generate 3 samples\n" |
|
|
58 |
] |
|
|
59 |
}, |
|
|
60 |
{ |
|
|
61 |
"cell_type": "code", |
|
|
62 |
"execution_count": null, |
|
|
63 |
"metadata": {}, |
|
|
64 |
"outputs": [], |
|
|
65 |
"source": [ |
|
|
66 |
"gen_function = generators.get_generate_function(model_id=\"00001_DCGAN_MMG_CALC_ROI\", \n", |
|
|
67 |
" num_samples=3)\n", |
|
|
68 |
"gen_function()" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "markdown", |
|
|
73 |
"metadata": {}, |
|
|
74 |
"source": [ |
|
|
75 |
"Create a list of search terms and find the models that have these terms in their config.\n" |
|
|
76 |
] |
|
|
77 |
}, |
|
|
78 |
{ |
|
|
79 |
"cell_type": "code", |
|
|
80 |
"execution_count": null, |
|
|
81 |
"metadata": {}, |
|
|
82 |
"outputs": [], |
|
|
83 |
"source": [ |
|
|
84 |
"values_list = ['dcgan', 'Mammography', 'inbreast']\n", |
|
|
85 |
"models = generators.find_matching_models_by_values(values=values_list, \n", |
|
|
86 |
" target_values_operator='AND', \n", |
|
|
87 |
" are_keys_also_matched=True, \n", |
|
|
88 |
" is_case_sensitive=False)\n", |
|
|
89 |
"print(f'Found models: {models}')" |
|
|
90 |
] |
|
|
91 |
}, |
|
|
92 |
{ |
|
|
93 |
"cell_type": "markdown", |
|
|
94 |
"metadata": {}, |
|
|
95 |
"source": [ |
|
|
96 |
"Create a list of search terms, find a model and generate\n" |
|
|
97 |
] |
|
|
98 |
}, |
|
|
99 |
{ |
|
|
100 |
"cell_type": "code", |
|
|
101 |
"execution_count": null, |
|
|
102 |
"metadata": {}, |
|
|
103 |
"outputs": [], |
|
|
104 |
"source": [ |
|
|
105 |
"values_list = ['dcgan', 'mMg', 'ClF', 'modalities', 'inbreast']\n", |
|
|
106 |
"generators.find_model_and_generate(values=values_list, \n", |
|
|
107 |
" target_values_operator='AND', \n", |
|
|
108 |
" are_keys_also_matched=True, \n", |
|
|
109 |
" is_case_sensitive=False, \n", |
|
|
110 |
" num_samples=5)" |
|
|
111 |
] |
|
|
112 |
}, |
|
|
113 |
{ |
|
|
114 |
"cell_type": "markdown", |
|
|
115 |
"metadata": {}, |
|
|
116 |
"source": [ |
|
|
117 |
"Rank the models by a performance metric and return ranked list of models\n" |
|
|
118 |
] |
|
|
119 |
}, |
|
|
120 |
{ |
|
|
121 |
"cell_type": "code", |
|
|
122 |
"execution_count": null, |
|
|
123 |
"metadata": {}, |
|
|
124 |
"outputs": [], |
|
|
125 |
"source": [ |
|
|
126 |
"ranked_models = generators.rank_models_by_performance(metric=\"SSIM\", \n", |
|
|
127 |
" order=\"asc\")\n", |
|
|
128 |
"print(ranked_models)" |
|
|
129 |
] |
|
|
130 |
}, |
|
|
131 |
{ |
|
|
132 |
"cell_type": "markdown", |
|
|
133 |
"metadata": {}, |
|
|
134 |
"source": [ |
|
|
135 |
"Find the models, then rank them by a performance metric and return ranked list of models\n" |
|
|
136 |
] |
|
|
137 |
}, |
|
|
138 |
{ |
|
|
139 |
"cell_type": "code", |
|
|
140 |
"execution_count": null, |
|
|
141 |
"metadata": {}, |
|
|
142 |
"outputs": [], |
|
|
143 |
"source": [ |
|
|
144 |
"ranked_models = generators.find_models_and_rank(values=values_list, \n", |
|
|
145 |
" target_values_operator='AND',\n", |
|
|
146 |
" are_keys_also_matched=True,\n", |
|
|
147 |
" is_case_sensitive=False, \n", |
|
|
148 |
" metric=\"SSIM\", \n", |
|
|
149 |
" order=\"asc\")\n", |
|
|
150 |
"print(ranked_models)" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "markdown", |
|
|
155 |
"metadata": {}, |
|
|
156 |
"source": [ |
|
|
157 |
"Find the models, then rank them, and then generate samples with the best ranked model.\n" |
|
|
158 |
] |
|
|
159 |
}, |
|
|
160 |
{ |
|
|
161 |
"cell_type": "code", |
|
|
162 |
"execution_count": null, |
|
|
163 |
"metadata": {}, |
|
|
164 |
"outputs": [], |
|
|
165 |
"source": [ |
|
|
166 |
"generators.find_models_rank_and_generate(values=values_list, \n", |
|
|
167 |
" target_values_operator='AND',\n", |
|
|
168 |
" are_keys_also_matched=True,\n", |
|
|
169 |
" is_case_sensitive=False, \n", |
|
|
170 |
" metric=\"SSIM\", \n", |
|
|
171 |
" order=\"asc\", \n", |
|
|
172 |
" num_samples=5)" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"cell_type": "markdown", |
|
|
177 |
"metadata": {}, |
|
|
178 |
"source": [ |
|
|
179 |
"Find all models that contain a specific key-value pair in their model config.\n" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": null, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [], |
|
|
187 |
"source": [ |
|
|
188 |
"key = \"modality\"\n", |
|
|
189 |
"value = \"Full-Field Mammography\"\n", |
|
|
190 |
"found_models = generators.get_models_by_key_value_pair(key1=key, \n", |
|
|
191 |
" value1=value, \n", |
|
|
192 |
" is_case_sensitive=False)\n", |
|
|
193 |
"print(found_models)" |
|
|
194 |
] |
|
|
195 |
} |
|
|
196 |
], |
|
|
197 |
"metadata": { |
|
|
198 |
"interpreter": { |
|
|
199 |
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" |
|
|
200 |
}, |
|
|
201 |
"kernelspec": { |
|
|
202 |
"display_name": "Python 3.9.10 64-bit", |
|
|
203 |
"language": "python", |
|
|
204 |
"name": "python3" |
|
|
205 |
}, |
|
|
206 |
"language_info": { |
|
|
207 |
"codemirror_mode": { |
|
|
208 |
"name": "ipython", |
|
|
209 |
"version": 3 |
|
|
210 |
}, |
|
|
211 |
"file_extension": ".py", |
|
|
212 |
"mimetype": "text/x-python", |
|
|
213 |
"name": "python", |
|
|
214 |
"nbconvert_exporter": "python", |
|
|
215 |
"pygments_lexer": "ipython3", |
|
|
216 |
"version": "3.8.12" |
|
|
217 |
}, |
|
|
218 |
"orig_nbformat": 4 |
|
|
219 |
}, |
|
|
220 |
"nbformat": 4, |
|
|
221 |
"nbformat_minor": 2 |
|
|
222 |
} |