|
a |
|
b/R/radiomics_spatial.R |
|
|
1 |
#' Calculate spatial radiomic features on a 2D or 3D array |
|
|
2 |
#' |
|
|
3 |
#' @param data Any 2D or 3D image (as matrix or array) to calculate spatial features |
|
|
4 |
#' @param features = spatial radiomic features to calculate |
|
|
5 |
#' @return Values from selected features |
|
|
6 |
#' @importFrom abind abind |
|
|
7 |
#' @export |
|
|
8 |
radiomics_spatial <- function(data, |
|
|
9 |
features = c('mi', 'gc', 'fd')){ |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
# Figure data dimension |
|
|
13 |
dimData <- length(dim(data)) |
|
|
14 |
|
|
|
15 |
#2D |
|
|
16 |
if(dimData == 2){ |
|
|
17 |
if('mi' %in% features){ |
|
|
18 |
mi_value <- moran2D(data) |
|
|
19 |
}else(mi_value = NULL) |
|
|
20 |
if('gc' %in% features){ |
|
|
21 |
gc_value <- geary2D(data) |
|
|
22 |
}else(gc_value = NULL) |
|
|
23 |
if('fd' %in% features){ |
|
|
24 |
fd_value <- fd2D(data) |
|
|
25 |
}else(fd_value = NULL) |
|
|
26 |
|
|
|
27 |
} |
|
|
28 |
|
|
|
29 |
# 3D |
|
|
30 |
if(dimData == 3){ |
|
|
31 |
|
|
|
32 |
if('mi' %in% features){ |
|
|
33 |
mi_value <- moran3D(data) |
|
|
34 |
}else(mi_value = NULL) |
|
|
35 |
if('gc' %in% features){ |
|
|
36 |
gc_value <- geary3D(data) |
|
|
37 |
}else(gc_value = NULL) |
|
|
38 |
if('fd' %in% features){ |
|
|
39 |
fd_value <- NULL #fd3D(data) # still need to work on this |
|
|
40 |
}else(fd_value = NULL) |
|
|
41 |
|
|
|
42 |
} |
|
|
43 |
|
|
|
44 |
featuresList <- list( |
|
|
45 |
mi = mi_value, |
|
|
46 |
gc = gc_value, |
|
|
47 |
fd = fd_value |
|
|
48 |
) |
|
|
49 |
if(length(features)==1){ |
|
|
50 |
featuresList = unlist(featuresList[features]) |
|
|
51 |
} |
|
|
52 |
|
|
|
53 |
return(featuresList) |
|
|
54 |
|
|
|
55 |
} |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
# Calculate Moran's I in 3D |
|
|
59 |
moran3D <- function(mat){ |
|
|
60 |
|
|
|
61 |
# Set up |
|
|
62 |
n <- length(mat[is.na(mat)==F]) |
|
|
63 |
xbar <- mean(mat, na.rm=T) |
|
|
64 |
diff <- mat - xbar |
|
|
65 |
diff2 <- diff**2 |
|
|
66 |
sum_diff2 <- sum(diff2, na.rm = T) |
|
|
67 |
|
|
|
68 |
# Dimension of matrix |
|
|
69 |
nx <- dim(diff)[1] |
|
|
70 |
ny <- dim(diff)[2] |
|
|
71 |
nz <- dim(diff)[3] |
|
|
72 |
|
|
|
73 |
# Rook shift |
|
|
74 |
left <- diff * abind(diff[-1,,], matrix(NA, nrow = ny, ncol = nz), along = 1) |
|
|
75 |
right <- diff * abind(matrix(NA, nrow = ny, ncol = nz), diff[-nx,,], along = 1) |
|
|
76 |
front <- diff * abind(diff[,-1,], matrix(NA, nrow = nx, ncol = nz), along = 2) |
|
|
77 |
back <- diff * abind(matrix(NA, nrow = nx, ncol = nz), diff[,-ny,], along = 2) |
|
|
78 |
up <- diff * abind(diff[,,-1], matrix(NA, nrow = nx, ncol = ny), along = 3) |
|
|
79 |
down <- diff * abind(matrix(NA, nrow = nx, ncol = ny), diff[,,-nz], along = 3) |
|
|
80 |
|
|
|
81 |
# Calcultate weights |
|
|
82 |
weights <- sum(length(left[is.na(left) == F])) + |
|
|
83 |
sum(length(right[is.na(right) == F])) + |
|
|
84 |
sum(length(front[is.na(front) == F])) + |
|
|
85 |
sum(length(back[is.na(back) == F])) + |
|
|
86 |
sum(length(up[is.na(up) == F])) + |
|
|
87 |
sum(length(down[is.na(down) == F])) |
|
|
88 |
|
|
|
89 |
# Change all "NAs" to zero, so we can efficiently sum matrices |
|
|
90 |
left[is.na(left)] <- 0 |
|
|
91 |
right[is.na(right)] <- 0 |
|
|
92 |
front[is.na(front)] <- 0 |
|
|
93 |
back[is.na(back)] <- 0 |
|
|
94 |
up[is.na(up)] <- 0 |
|
|
95 |
down[is.na(down)] <- 0 |
|
|
96 |
|
|
|
97 |
# Put info together to calculate MI |
|
|
98 |
sumv <- left + right + front + back + up + down |
|
|
99 |
local_mi <- sumv / sum_diff2 * n / weights |
|
|
100 |
global_mi <- sum(local_mi) |
|
|
101 |
|
|
|
102 |
return(global_mi) |
|
|
103 |
} |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
# Calculate Moran's I in 2D |
|
|
109 |
moran2D<-function(mat){ |
|
|
110 |
|
|
|
111 |
# Set up |
|
|
112 |
n <- length(mat[is.na(mat)==F]) |
|
|
113 |
xbar <- mean(mat, na.rm=T) |
|
|
114 |
diff <- mat - xbar |
|
|
115 |
diff2 <- diff**2 |
|
|
116 |
sum_diff2 <- sum(diff2, na.rm = T) |
|
|
117 |
|
|
|
118 |
# Dimension of matrix |
|
|
119 |
nrow <- dim(diff)[1] |
|
|
120 |
ncol <- dim(diff)[2] |
|
|
121 |
|
|
|
122 |
# Rook shift |
|
|
123 |
up <- diff * rbind(diff[-1,],rep(NA,ncol)) |
|
|
124 |
down <- diff * rbind(rep(NA,ncol),diff[-nrow,]) |
|
|
125 |
left <- diff * cbind(diff[,-1],rep(NA,nrow)) |
|
|
126 |
right <- diff * cbind(rep(NA,nrow),diff[,-ncol]) |
|
|
127 |
|
|
|
128 |
# Calcultate weights |
|
|
129 |
weights <- sum(length(left[is.na(left) == F])) + |
|
|
130 |
sum(length(right[is.na(right) == F])) + |
|
|
131 |
sum(length(up[is.na(up) == F])) + |
|
|
132 |
sum(length(down[is.na(down) == F])) |
|
|
133 |
|
|
|
134 |
# Change all "NAs" to zero, so we can efficiently sum matrices |
|
|
135 |
left[is.na(left)] <- 0 |
|
|
136 |
right[is.na(right)] <- 0 |
|
|
137 |
up[is.na(up)] <- 0 |
|
|
138 |
down[is.na(down)] <- 0 |
|
|
139 |
|
|
|
140 |
# Put info together to calculate MI |
|
|
141 |
sumv <- left + right + up + down |
|
|
142 |
local_mi <- sumv / sum_diff2 * n / weights |
|
|
143 |
global_mi <- sum(local_mi) |
|
|
144 |
|
|
|
145 |
return(global_mi) |
|
|
146 |
} |
|
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
|
151 |
# Calculate Geary's C in 3D |
|
|
152 |
geary3D<-function(mat){ |
|
|
153 |
|
|
|
154 |
# Set up |
|
|
155 |
n <- length(mat[is.na(mat)==F]) |
|
|
156 |
xbar <- mean(mat, na.rm=T) |
|
|
157 |
diff <- mat - xbar |
|
|
158 |
diff2 <- diff**2 |
|
|
159 |
sum_diff2 <- sum(diff2, na.rm = T) |
|
|
160 |
|
|
|
161 |
# Dimension of matrix |
|
|
162 |
nx <- dim(diff)[1] |
|
|
163 |
ny <- dim(diff)[2] |
|
|
164 |
nz <- dim(diff)[3] |
|
|
165 |
|
|
|
166 |
# Rook shift |
|
|
167 |
left <- (mat - abind(mat[-1,,], matrix(NA, nrow = ny, ncol = nz), along = 1) )^2 |
|
|
168 |
right <- (mat - abind(matrix(NA, nrow = ny, ncol = nz), mat[-nx,,], along = 1) )^2 |
|
|
169 |
front <- (mat - abind(mat[,-1,], matrix(NA, nrow = nx, ncol = nz), along = 2) )^2 |
|
|
170 |
back <- (mat - abind(matrix(NA, nrow = nx, ncol = nz), mat[,-ny,], along = 2) )^2 |
|
|
171 |
up <- (mat - abind(mat[,,-1], matrix(NA, nrow = nx, ncol = ny), along = 3) )^2 |
|
|
172 |
down <- (mat - abind(matrix(NA, nrow = nx, ncol = ny), mat[,,-nz], along = 3) )^2 |
|
|
173 |
|
|
|
174 |
# Calcultate weights |
|
|
175 |
weights <- sum(length(left[is.na(left) == F])) + |
|
|
176 |
sum(length(right[is.na(right) == F])) + |
|
|
177 |
sum(length(front[is.na(front) == F])) + |
|
|
178 |
sum(length(back[is.na(back) == F])) + |
|
|
179 |
sum(length(up[is.na(up) == F])) + |
|
|
180 |
sum(length(down[is.na(down) == F])) |
|
|
181 |
|
|
|
182 |
# Change all "NAs" to zero, so we can efficiently sum matrices |
|
|
183 |
left[is.na(left)] <- 0 |
|
|
184 |
right[is.na(right)] <- 0 |
|
|
185 |
front[is.na(front)] <- 0 |
|
|
186 |
back[is.na(back)] <- 0 |
|
|
187 |
up[is.na(up)] <- 0 |
|
|
188 |
down[is.na(down)] <- 0 |
|
|
189 |
|
|
|
190 |
# Put info together to calculate GC |
|
|
191 |
sumv <- left + right + front + back + up + down |
|
|
192 |
local_gc <- sumv / sum_diff2 * (n - 1) / (2 * weights) |
|
|
193 |
global_gc <- sum(local_gc) |
|
|
194 |
|
|
|
195 |
return(global_gc) |
|
|
196 |
} |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
# Calculate Geary's C in 2D |
|
|
200 |
geary2D<-function(mat){ |
|
|
201 |
|
|
|
202 |
# Set up |
|
|
203 |
n <- length(mat[is.na(mat)==F]) |
|
|
204 |
xbar <- mean(mat, na.rm=T) |
|
|
205 |
diff <- mat - xbar |
|
|
206 |
diff2 <- diff**2 |
|
|
207 |
sum_diff2 <- sum(diff2, na.rm = T) |
|
|
208 |
|
|
|
209 |
# Dimension of matrix |
|
|
210 |
nrow <- dim(diff)[1] |
|
|
211 |
ncol <- dim(diff)[2] |
|
|
212 |
|
|
|
213 |
# Rook shift |
|
|
214 |
up <- (mat - rbind(mat[-1,],rep(NA,ncol)) )^2 |
|
|
215 |
down <- (mat - rbind(rep(NA,ncol),mat[-nrow,]) )^2 |
|
|
216 |
left <- (mat - cbind(mat[,-1],rep(NA,nrow)) )^2 |
|
|
217 |
right <- (mat - cbind(rep(NA,nrow),mat[,-ncol]) )^2 |
|
|
218 |
|
|
|
219 |
# Calcultate weights |
|
|
220 |
weights <- sum(length(left[is.na(left) == F])) + |
|
|
221 |
sum(length(right[is.na(right) == F])) + |
|
|
222 |
sum(length(up[is.na(up) == F])) + |
|
|
223 |
sum(length(down[is.na(down) == F])) |
|
|
224 |
|
|
|
225 |
# Change all "NAs" to zero, so we can efficiently sum matrices |
|
|
226 |
left[is.na(left)] <- 0 |
|
|
227 |
right[is.na(right)] <- 0 |
|
|
228 |
up[is.na(up)] <- 0 |
|
|
229 |
down[is.na(down)] <- 0 |
|
|
230 |
|
|
|
231 |
# Put info together to calculate GC |
|
|
232 |
sumv <- left + right + up + down |
|
|
233 |
local_gc <- sumv / sum_diff2 * (n - 1) / (2 * weights) |
|
|
234 |
global_gc <- sum(local_gc) |
|
|
235 |
|
|
|
236 |
return(global_gc) |
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
# Calculate fractal dimension in 2D |
|
|
245 |
fd2D <- function(data) { |
|
|
246 |
fdx<-apply(data,1,fd1) |
|
|
247 |
fdy<-apply(data,2,fd1) |
|
|
248 |
fd<-c(fdx,fdy) |
|
|
249 |
fd_sub<-fd[fd<2] |
|
|
250 |
FD <- ifelse(length(fd_sub)<100,NA,1 + median(fd_sub,na.rm=T)) |
|
|
251 |
return(FD) |
|
|
252 |
} |
|
|
253 |
fd1<-function(i){ |
|
|
254 |
n <- length(i) |
|
|
255 |
g1 <- abs(i[2:n]-i[1:(n-1)]) |
|
|
256 |
sumg1<-sum(g1,na.rm=T)/(2*length(g1[is.na(g1)==F])) |
|
|
257 |
g2 <- abs(i[3:n]-i[1:(n-2)]) |
|
|
258 |
sumg2 <- sum(g2,na.rm=T)/(2*length(g2[is.na(g2)==F])) |
|
|
259 |
slope <- sum(log(sumg2)-log(sumg1),na.rm=T)/log(2) |
|
|
260 |
fd <- 2-slope |
|
|
261 |
return(fd) |
|
|
262 |
} |
|
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
|
277 |
|
|
|
278 |
|