|
a |
|
b/R/radiomics_slice.R |
|
|
1 |
#' Radiomic Calculation on CT Slices |
|
|
2 |
#' |
|
|
3 |
#' Calculate radiomic features on the each 2D slice of the whole 3D lung, right and left lungs separately |
|
|
4 |
#' |
|
|
5 |
#' @param img CT scan in ANTs image file format |
|
|
6 |
#' @param mask Mask of CT scan in ANTs image file format |
|
|
7 |
#' @param sides Choose to calculate radiomic features on the right and/or left lungs. Note: Right lung = 1, left lung = 2, non-lung = 0 |
|
|
8 |
#' @param plane One of: axial, coronal, sagittal |
|
|
9 |
#' @param featuresFirst First level radiomic features to calculate |
|
|
10 |
#' @param featuresSpatial Spatial radiomic features to calculate |
|
|
11 |
#' @param tidy Logical. If true, outputs a tidy dataframe with results. If false, outputs nested loop. |
|
|
12 |
#' @param reduce Logical. If true, reduces the dimensions of the scan based on extent of mask using reduce_scan. |
|
|
13 |
#' |
|
|
14 |
#' @return Radiomic values from every slice in both the right and left lungs |
|
|
15 |
#' @export |
|
|
16 |
#' |
|
|
17 |
radiomics_slice <- function(img, |
|
|
18 |
mask, |
|
|
19 |
sides = c("right", "left"), |
|
|
20 |
plane = 'axial', |
|
|
21 |
featuresFirst = c('mean', 'sd', 'skew', 'kurtosis', 'min', 'q1', 'median', 'q3', 'max','energy', 'rms', 'uniformity', 'entropy'), |
|
|
22 |
featuresSpatial = c('mi', 'gc', 'fd'), |
|
|
23 |
tidy = TRUE, |
|
|
24 |
reduce = TRUE){ |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
featuresMask <- lapply(sides, function(side){ |
|
|
28 |
|
|
|
29 |
if(side == "right"){mv = 1} |
|
|
30 |
if(side == "left"){mv = 2} |
|
|
31 |
|
|
|
32 |
mask2 <- mask == mv |
|
|
33 |
|
|
|
34 |
# Reduce scan (optional) |
|
|
35 |
if(reduce == TRUE){ |
|
|
36 |
red <- reduce_scan(img, mask2) |
|
|
37 |
img2 <- red$img |
|
|
38 |
mask2 <- red$mask |
|
|
39 |
rm(red) |
|
|
40 |
gc() |
|
|
41 |
}else{img2 <- img} |
|
|
42 |
|
|
|
43 |
# Put image in array format and remove non-mask values |
|
|
44 |
img2 <- as.array(img2) |
|
|
45 |
mask2 <- as.array(mask2) |
|
|
46 |
img2[mask2 != 1] <- NA |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
# Which plane? |
|
|
50 |
if(plane == 'axial'){p = 3} |
|
|
51 |
if(plane == 'coronal'){p = 2} |
|
|
52 |
if(plane == 'sagittal'){p = 1} |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
# Calculate features |
|
|
56 |
ndim <- dim(img2)[p] |
|
|
57 |
features <- apply(img2, p, function(x){ |
|
|
58 |
npixels <- length(x[!is.na(x)]) |
|
|
59 |
if(length(featuresFirst)>0){ |
|
|
60 |
features1 <- radiomics_first(x, featuresFirst) |
|
|
61 |
}else(features1 <- NULL) |
|
|
62 |
if(length(featuresSpatial)>0){ |
|
|
63 |
features2 <- radiomics_spatial(x, featuresSpatial) |
|
|
64 |
}else(features2 <- NULL) |
|
|
65 |
features <- c(features1, features2) |
|
|
66 |
features <- features[c(featuresFirst, featuresSpatial)] |
|
|
67 |
features <- c(npixels = npixels, features) |
|
|
68 |
return(features) |
|
|
69 |
}) |
|
|
70 |
names(features) <- paste0('slic_num_', 1:ndim) |
|
|
71 |
|
|
|
72 |
return(features) |
|
|
73 |
}) |
|
|
74 |
names(featuresMask) <- sides |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
if(tidy == TRUE){ |
|
|
78 |
# Make a nice little data frame to output |
|
|
79 |
test2 = NULL |
|
|
80 |
for(i in 1:length(featuresMask)){ |
|
|
81 |
test <- do.call('rbind', featuresMask[[i]]) |
|
|
82 |
test <- cbind.data.frame(lung = names(featuresMask)[i], |
|
|
83 |
slice_number = names(featuresMask[[i]]), |
|
|
84 |
test) |
|
|
85 |
test$slice_number <- gsub("slic_num_", "", test$slice_number) |
|
|
86 |
test <- as.data.frame(sapply(test, as.numeric)) |
|
|
87 |
nslic <- dim(test)[1] |
|
|
88 |
test$slice_percent <- test$slice_number/nslic * 100 |
|
|
89 |
test2 <- rbind(test2, test) |
|
|
90 |
} |
|
|
91 |
featuresMask <- test2 |
|
|
92 |
rownames(featuresMask) <- c() |
|
|
93 |
} |
|
|
94 |
|
|
|
95 |
return(featuresMask) |
|
|
96 |
} |