|
a |
|
b/R/radiomics_first.R |
|
|
1 |
#' Calculate first order radiomic features on a 2D or 3D array |
|
|
2 |
#' |
|
|
3 |
#' @param data Any 2D or 3D image (as matrix or array) to calculate first-order features |
|
|
4 |
#' @param features = first level radiomic features to calculate |
|
|
5 |
#' |
|
|
6 |
#' @return Values from selected features |
|
|
7 |
#' @importFrom stats quantile sd |
|
|
8 |
#' @export |
|
|
9 |
radiomics_first <- function(data, |
|
|
10 |
features = c('mean', 'sd', 'skew', 'kurtosis', 'min', 'q1', 'median', 'q3', 'max','energy', 'rms', 'uniformity', 'entropy')){ |
|
|
11 |
|
|
|
12 |
# Clean up data |
|
|
13 |
data <- as.vector(data) |
|
|
14 |
data <- data[!is.na(data)] |
|
|
15 |
|
|
|
16 |
# Moments |
|
|
17 |
if('mean' %in% features){ |
|
|
18 |
mean_value <- mean(data) |
|
|
19 |
}else(mean_value = NULL) |
|
|
20 |
if('sd' %in% features){ |
|
|
21 |
sd_value <- sd(data) |
|
|
22 |
}else(sd_value = NULL) |
|
|
23 |
if('skew' %in% features){ |
|
|
24 |
skew_value <- skew(data) |
|
|
25 |
}else(skew_value = NULL) |
|
|
26 |
if('kurtosis' %in% features){ |
|
|
27 |
kurtosis_value <- kurtosis(data) |
|
|
28 |
}else(kurtosis_value = NULL) |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
# Quartiles |
|
|
32 |
if('min' %in% features){ |
|
|
33 |
min_value <- min(data) |
|
|
34 |
}else(min_value = NULL) |
|
|
35 |
if('q1' %in% features){ |
|
|
36 |
q1_value <- unname(quantile(data, probs = 0.25)) |
|
|
37 |
}else(q1_value = NULL) |
|
|
38 |
if('median' %in% features){ |
|
|
39 |
median_value <- median(data) |
|
|
40 |
}else(median_value = NULL) |
|
|
41 |
if('q3' %in% features){ |
|
|
42 |
q3_value <- unname(quantile(data, probs = 0.75)) |
|
|
43 |
}else(q3_value = NULL) |
|
|
44 |
if('max' %in% features){ |
|
|
45 |
max_value <- max(data) |
|
|
46 |
}else(max_value = NULL) |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
# Others |
|
|
50 |
if('energy' %in% features){ |
|
|
51 |
energy_value <- energy(data) |
|
|
52 |
}else(energy_value = NULL) |
|
|
53 |
if('rms' %in% features){ |
|
|
54 |
rms_value <- rms(data) |
|
|
55 |
}else(rms_value = NULL) |
|
|
56 |
if('uniformity' %in% features){ |
|
|
57 |
uniformity_value <- uniformity(data) |
|
|
58 |
}else(uniformity_value = NULL) |
|
|
59 |
if('entropy' %in% features){ |
|
|
60 |
entropy_value <- entropy(data) |
|
|
61 |
}else(entropy_value = NULL) |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
featuresList <- list( |
|
|
65 |
mean = mean_value, |
|
|
66 |
sd = sd_value, |
|
|
67 |
skew = skew_value, |
|
|
68 |
kurtosis = kurtosis_value, |
|
|
69 |
min = min_value, |
|
|
70 |
q1 = q1_value, |
|
|
71 |
median = median_value, |
|
|
72 |
q3 = q3_value, |
|
|
73 |
max = max_value, |
|
|
74 |
energy = energy_value, |
|
|
75 |
rms = rms_value, |
|
|
76 |
uniformity = uniformity_value, |
|
|
77 |
entropy = entropy_value |
|
|
78 |
) |
|
|
79 |
if(length(features)==1){ |
|
|
80 |
featuresList = unlist(featuresList[features]) |
|
|
81 |
} |
|
|
82 |
|
|
|
83 |
return(featuresList) |
|
|
84 |
|
|
|
85 |
} |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
skew <- function(data) { |
|
|
90 |
avg <- mean(data) |
|
|
91 |
SD <- stats::sd(data) |
|
|
92 |
output <- mean(((data-avg)^3))/(SD)^3 |
|
|
93 |
return(output) |
|
|
94 |
} |
|
|
95 |
|
|
|
96 |
kurtosis <- function(data) { |
|
|
97 |
avg <- mean(data) |
|
|
98 |
SD <- stats::sd(data) |
|
|
99 |
output <- mean(((data-avg)^4))/(SD)^4 |
|
|
100 |
return(output-3) |
|
|
101 |
} |
|
|
102 |
|
|
|
103 |
energy <- function(data) { |
|
|
104 |
output <- sum(data^2) |
|
|
105 |
return(output) |
|
|
106 |
} |
|
|
107 |
|
|
|
108 |
rms <- function(data) { |
|
|
109 |
output <- sqrt(sum(data^2)/length(data)) |
|
|
110 |
return(output) |
|
|
111 |
} |
|
|
112 |
|
|
|
113 |
uniformity <- function(data) { |
|
|
114 |
output <- sum((table(data)/length(data))^2) |
|
|
115 |
return(output) |
|
|
116 |
} |
|
|
117 |
|
|
|
118 |
entropy <- function (data, base = 2) |
|
|
119 |
{ |
|
|
120 |
p <- table(data)/length(data) |
|
|
121 |
l <- logb(p, base) |
|
|
122 |
H <- sum(p * l)*-1 |
|
|
123 |
return(H) |
|
|
124 |
} |
|
|
125 |
|
|
|
126 |
|
|
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|