|
a |
|
b/R/RIA_lung.R |
|
|
1 |
#' Calculate first-order, GLCM, and/or GLRLM radiomic features on the whole 3D lung |
|
|
2 |
#' |
|
|
3 |
#' This is a wrapper for \code{RIA} R package. It calculates first-order, GLCM, and/or GLRLM on the whole 3D lung, left and right lungs separately |
|
|
4 |
#' |
|
|
5 |
#' @param img CT scan in ANTs image file format |
|
|
6 |
#' @param mask Mask of CT scan in ANTs image file format |
|
|
7 |
#' @param sides Choose to calculate radiomic features on the right and/or left lungs. Note: Right lung = 1, left lung = 2, non-lung = 0 |
|
|
8 |
#' @param features Type of radiomic features to calculate. Options: first-order, GLCM, and/or GLRLM |
|
|
9 |
#' @param bins_in Number of bins to discretize image |
|
|
10 |
#' @param equal_prob logical, indicating to cut data into bins with equal relative frequencies. |
|
|
11 |
#' If FALSE, then equal interval bins will be used. |
|
|
12 |
#' @param distance integer, distance between the voxels being compared. |
|
|
13 |
#' @param statistic string, defining the statistic to be calculated on the array of GLCM statistics. |
|
|
14 |
#' By default, statistic is set to \emph{"mean"}, however any function may be provided. The proper |
|
|
15 |
#' syntax is: function(X, attributes). The supplied string must contain a "X", which will be replaced |
|
|
16 |
#' with the array of the GLCM statistics value. Further attributes of the function may also be given. |
|
|
17 |
#' For example, if you wish to calculate the median of all GLCMs calculated in different directions, |
|
|
18 |
#' then it must be supplied as: \emph{median(X, na.rm = TRUE)}. |
|
|
19 |
#' @param verbose_in logical, indicating whether to print detailed information. |
|
|
20 |
#' Most prints can also be suppressed using the \code{\link{suppressMessages}} function. |
|
|
21 |
#' |
|
|
22 |
#' @return list containing the statistical information |
|
|
23 |
#' @export |
|
|
24 |
# #' @importFrom RIA first_order discretize glcm_all glcm_stat glcm_stat_all glrlm_all glrlm_stat glrlm_stat_all |
|
|
25 |
RIA_lung <- function(img, |
|
|
26 |
mask, |
|
|
27 |
sides = c("right", "left"), |
|
|
28 |
features = c('fo', 'glcm', 'glrlm'), |
|
|
29 |
bins_in = 8, |
|
|
30 |
equal_prob = FALSE, |
|
|
31 |
distance = 1, |
|
|
32 |
statistic = "mean(X, na.rm = TRUE)", |
|
|
33 |
verbose_in = TRUE){ |
|
|
34 |
|
|
|
35 |
if (!requireNamespace("RIA", quietly = TRUE)) { |
|
|
36 |
stop("RIA package required for RIA_lung") |
|
|
37 |
} |
|
|
38 |
# Loop through mask values |
|
|
39 |
featuresMask <- lapply(sides, function(side){ |
|
|
40 |
|
|
|
41 |
if(side == "right"){mv = 1} |
|
|
42 |
if(side == "left"){mv = 2} |
|
|
43 |
|
|
|
44 |
# Put image in array format and remove non-mask values |
|
|
45 |
data <- as.array(img) |
|
|
46 |
mask2 <- as.array(mask) |
|
|
47 |
data[mask2 != mv] <- NA |
|
|
48 |
|
|
|
49 |
# Crop image to speed up computation |
|
|
50 |
test <- apply(data, 1, function(x){sum(x, na.rm=T)}) |
|
|
51 |
data <- data[which(test != 0),,] |
|
|
52 |
test <- apply(data, 2, function(x){sum(x, na.rm=T)}) |
|
|
53 |
data <- data[,which(test != 0),] |
|
|
54 |
test <- apply(data, 3, function(x){sum(x, na.rm=T)}) |
|
|
55 |
data <- data[,,which(test != 0)] |
|
|
56 |
|
|
|
57 |
###create RIA_image structure |
|
|
58 |
RIA_image <- list(data = NULL, header = list(), log = list()) |
|
|
59 |
if(length(dim(data)) == 3 | length(dim(data)) == 2) {class(RIA_image) <- append(class(RIA_image), "RIA_image") |
|
|
60 |
} else {stop(paste0("ANTsImage LOADED IS ", length(dim(data)), " DIMENSIONAL. ONLY 2D AND 3D DATA ARE SUPPORTED!"))} |
|
|
61 |
RIA_image$data$orig <- data |
|
|
62 |
RIA_image$data$modif <- NULL |
|
|
63 |
class(RIA_image$header) <- append(class(RIA_image$header), "RIA_header") |
|
|
64 |
class(RIA_image$data) <- append(class(RIA_image$data), "RIA_data") |
|
|
65 |
class(RIA_image$log) <- append(class(RIA_image$log), "RIA_log") |
|
|
66 |
RIA_image$log$events <- "Created" |
|
|
67 |
RIA_image$log$orig_dim <- dim(data) |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
# Calculate first order radiomic features |
|
|
71 |
if('fo' %in% features){ |
|
|
72 |
RIA_image <- RIA::first_order(RIA_image, use_type = "single", use_orig = TRUE, verbose_in = verbose_in) |
|
|
73 |
} |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
# Discretize image |
|
|
77 |
if('glcm' %in% features | 'glrlm' %in% features){ |
|
|
78 |
RIA_image <- RIA::discretize(RIA_image, bins_in=bins_in, equal_prob = equal_prob, verbose_in = verbose_in) |
|
|
79 |
|
|
|
80 |
# Calculate GLCM radiomic features |
|
|
81 |
if('glcm' %in% features){ |
|
|
82 |
for (i in 1: length(distance)) { |
|
|
83 |
RIA_image <- RIA::glcm_all(RIA_image, use_type = "discretized", distance = distance[i], verbose_in = verbose_in) |
|
|
84 |
} |
|
|
85 |
RIA_image <- RIA::glcm_stat(RIA_image, use_type = "glcm", verbose_in = verbose_in) |
|
|
86 |
RIA_image <- RIA::glcm_stat_all(RIA_image, statistic = statistic, verbose_in = verbose_in) |
|
|
87 |
} |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
# Calculate GLRLM radiomic features |
|
|
91 |
if('glrlm' %in% features){ |
|
|
92 |
RIA_image <- RIA::glrlm_all(RIA_image, use_type = "discretized", verbose_in = verbose_in) |
|
|
93 |
RIA_image <- RIA::glrlm_stat(RIA_image, use_type = "glrlm", verbose_in = verbose_in) |
|
|
94 |
RIA_image <- RIA::glrlm_stat_all(RIA_image, statistic = statistic, verbose_in = verbose_in) |
|
|
95 |
}else{RIA_image$stat_glrlm_mean <- NULL} |
|
|
96 |
} |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
features <- list(first_order = RIA_image$stat_fo$orig, |
|
|
100 |
glcm = RIA_image$stat_glcm_mean, |
|
|
101 |
glrlm = RIA_image$stat_glrlm_mean) |
|
|
102 |
|
|
|
103 |
|
|
|
104 |
return(features) |
|
|
105 |
}) |
|
|
106 |
names(featuresMask) <- sides |
|
|
107 |
|
|
|
108 |
return(featuresMask) |
|
|
109 |
} |