# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
from argparse import ArgumentParser
from mmcv import track_iter_progress
from PIL import Image
from xtcocotools.coco import COCO
from mmpose.apis import inference_top_down_pose_model, init_pose_model
def main():
"""Visualize the demo images.
pose_keypoints require the json_file containing boxes.
"""
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for detection')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument('--img-root', type=str, default='', help='Image root')
parser.add_argument(
'--json-file',
type=str,
default='',
help='Json file containing image person bboxes in COCO format.')
parser.add_argument(
'--out-json-file',
type=str,
default='',
help='Output json contains pseudolabeled annotation')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
args = parser.parse_args()
coco = COCO(args.json_file)
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
img_keys = list(coco.imgs.keys())
# optional
return_heatmap = False
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
categories = [{'id': 1, 'name': 'person'}]
img_anno_dict = {'images': [], 'annotations': [], 'categories': categories}
# process each image
ann_uniq_id = int(0)
for i in track_iter_progress(range(len(img_keys))):
# get bounding box annotations
image_id = img_keys[i]
image = coco.loadImgs(image_id)[0]
image_name = os.path.join(args.img_root, image['file_name'])
width, height = Image.open(image_name).size
ann_ids = coco.getAnnIds(image_id)
# make person bounding boxes
person_results = []
for ann_id in ann_ids:
person = {}
ann = coco.anns[ann_id]
# bbox format is 'xywh'
person['bbox'] = ann['bbox']
person_results.append(person)
pose_results, returned_outputs = inference_top_down_pose_model(
pose_model,
image_name,
person_results,
bbox_thr=None,
format='xywh',
dataset=dataset,
return_heatmap=return_heatmap,
outputs=output_layer_names)
# add output of model and bboxes to dict
for indx, i in enumerate(pose_results):
pose_results[indx]['keypoints'][
pose_results[indx]['keypoints'][:, 2] < args.kpt_thr, :3] = 0
pose_results[indx]['keypoints'][
pose_results[indx]['keypoints'][:, 2] >= args.kpt_thr, 2] = 2
x = int(pose_results[indx]['bbox'][0])
y = int(pose_results[indx]['bbox'][1])
w = int(pose_results[indx]['bbox'][2] -
pose_results[indx]['bbox'][0])
h = int(pose_results[indx]['bbox'][3] -
pose_results[indx]['bbox'][1])
bbox = [x, y, w, h]
area = round((w * h), 0)
images = {
'file_name': image_name.split('/')[-1],
'height': height,
'width': width,
'id': int(image_id)
}
annotations = {
'keypoints': [
int(i) for i in pose_results[indx]['keypoints'].reshape(
-1).tolist()
],
'num_keypoints':
len(pose_results[indx]['keypoints']),
'area':
area,
'iscrowd':
0,
'image_id':
int(image_id),
'bbox':
bbox,
'category_id':
1,
'id':
ann_uniq_id,
}
img_anno_dict['annotations'].append(annotations)
ann_uniq_id += 1
img_anno_dict['images'].append(images)
# create json
with open(args.out_json_file, 'w') as outfile:
json.dump(img_anno_dict, outfile, indent=2)
if __name__ == '__main__':
main()