# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmpose.core.post_processing.nms import nms, oks_iou, oks_nms, soft_oks_nms
def test_soft_oks_nms():
oks_thr = 0.9
kpts = []
kpts.append({
'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]),
'area': 100,
'score': 0.9
})
kpts.append({
'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]),
'area': 100,
'score': 0.4
})
kpts.append({
'keypoints': np.tile(np.array([100, 100, 0.9]), [17, 1]),
'area': 100,
'score': 0.7
})
keep = soft_oks_nms([kpts[i] for i in range(len(kpts))], oks_thr)
assert (keep == np.array([0, 2, 1])).all()
keep = oks_nms([kpts[i] for i in range(len(kpts))], oks_thr)
assert (keep == np.array([0, 2])).all()
kpts_with_score_joints = []
kpts_with_score_joints.append({
'keypoints':
np.tile(np.array([10, 10, 0.9]), [17, 1]),
'area':
100,
'score':
np.tile(np.array([0.9]), 17)
})
kpts_with_score_joints.append({
'keypoints':
np.tile(np.array([10, 10, 0.9]), [17, 1]),
'area':
100,
'score':
np.tile(np.array([0.4]), 17)
})
kpts_with_score_joints.append({
'keypoints':
np.tile(np.array([100, 100, 0.9]), [17, 1]),
'area':
100,
'score':
np.tile(np.array([0.7]), 17)
})
keep = soft_oks_nms([
kpts_with_score_joints[i] for i in range(len(kpts_with_score_joints))
],
oks_thr,
score_per_joint=True)
assert (keep == np.array([0, 2, 1])).all()
keep = oks_nms([
kpts_with_score_joints[i] for i in range(len(kpts_with_score_joints))
],
oks_thr,
score_per_joint=True)
assert (keep == np.array([0, 2])).all()
def test_func_nms():
result = nms(np.array([[0, 0, 10, 10, 0.9], [0, 0, 10, 8, 0.8]]), 0.5)
assert result == [0]
def test_oks_iou():
result = oks_iou(np.ones([17 * 3]), np.ones([1, 17 * 3]), 1, [1])
assert result[0] == 1.
result = oks_iou(np.zeros([17 * 3]), np.ones([1, 17 * 3]), 1, [1])
assert result[0] < 0.01