# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmpose.core import build_optimizers
class ExampleModel(nn.Module):
def __init__(self):
super().__init__()
self.model1 = nn.Conv2d(3, 8, kernel_size=3)
self.model2 = nn.Conv2d(3, 4, kernel_size=3)
def forward(self, x):
return x
def test_build_optimizers():
base_lr = 0.0001
base_wd = 0.0002
momentum = 0.9
# basic config with ExampleModel
optimizer_cfg = dict(
model1=dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum),
model2=dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum))
model = ExampleModel()
optimizers = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
for i in range(2):
optimizer = optimizers[f'model{i+1}']
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 2
assert torch.equal(param_groups['params'][0],
param_dict[f'model{i+1}.weight'])
assert torch.equal(param_groups['params'][1],
param_dict[f'model{i+1}.bias'])
# basic config with Parallel model
model = torch.nn.DataParallel(ExampleModel())
optimizers = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
for i in range(2):
optimizer = optimizers[f'model{i+1}']
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 2
assert torch.equal(param_groups['params'][0],
param_dict[f'module.model{i+1}.weight'])
assert torch.equal(param_groups['params'][1],
param_dict[f'module.model{i+1}.bias'])
# basic config with ExampleModel (one optimizer)
optimizer_cfg = dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
model = ExampleModel()
optimizer = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 4
assert torch.equal(param_groups['params'][0], param_dict['model1.weight'])
assert torch.equal(param_groups['params'][1], param_dict['model1.bias'])
assert torch.equal(param_groups['params'][2], param_dict['model2.weight'])
assert torch.equal(param_groups['params'][3], param_dict['model2.bias'])
# basic config with Parallel model (one optimizer)
model = torch.nn.DataParallel(ExampleModel())
optimizer = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 4
assert torch.equal(param_groups['params'][0],
param_dict['module.model1.weight'])
assert torch.equal(param_groups['params'][1],
param_dict['module.model1.bias'])
assert torch.equal(param_groups['params'][2],
param_dict['module.model2.weight'])
assert torch.equal(param_groups['params'][3],
param_dict['module.model2.bias'])