[c1b1c5]: / ViTPose / tests / test_optimizer.py

Download this file

102 lines (90 with data), 4.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmpose.core import build_optimizers
class ExampleModel(nn.Module):
def __init__(self):
super().__init__()
self.model1 = nn.Conv2d(3, 8, kernel_size=3)
self.model2 = nn.Conv2d(3, 4, kernel_size=3)
def forward(self, x):
return x
def test_build_optimizers():
base_lr = 0.0001
base_wd = 0.0002
momentum = 0.9
# basic config with ExampleModel
optimizer_cfg = dict(
model1=dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum),
model2=dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum))
model = ExampleModel()
optimizers = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
for i in range(2):
optimizer = optimizers[f'model{i+1}']
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 2
assert torch.equal(param_groups['params'][0],
param_dict[f'model{i+1}.weight'])
assert torch.equal(param_groups['params'][1],
param_dict[f'model{i+1}.bias'])
# basic config with Parallel model
model = torch.nn.DataParallel(ExampleModel())
optimizers = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
for i in range(2):
optimizer = optimizers[f'model{i+1}']
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 2
assert torch.equal(param_groups['params'][0],
param_dict[f'module.model{i+1}.weight'])
assert torch.equal(param_groups['params'][1],
param_dict[f'module.model{i+1}.bias'])
# basic config with ExampleModel (one optimizer)
optimizer_cfg = dict(
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)
model = ExampleModel()
optimizer = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 4
assert torch.equal(param_groups['params'][0], param_dict['model1.weight'])
assert torch.equal(param_groups['params'][1], param_dict['model1.bias'])
assert torch.equal(param_groups['params'][2], param_dict['model2.weight'])
assert torch.equal(param_groups['params'][3], param_dict['model2.bias'])
# basic config with Parallel model (one optimizer)
model = torch.nn.DataParallel(ExampleModel())
optimizer = build_optimizers(model, optimizer_cfg)
param_dict = dict(model.named_parameters())
assert isinstance(optimizers, dict)
param_groups = optimizer.param_groups[0]
assert isinstance(optimizer, torch.optim.SGD)
assert optimizer.defaults['lr'] == base_lr
assert optimizer.defaults['momentum'] == momentum
assert optimizer.defaults['weight_decay'] == base_wd
assert len(param_groups['params']) == 4
assert torch.equal(param_groups['params'][0],
param_dict['module.model1.weight'])
assert torch.equal(param_groups['params'][1],
param_dict['module.model1.bias'])
assert torch.equal(param_groups['params'][2],
param_dict['module.model2.weight'])
assert torch.equal(param_groups['params'][3],
param_dict['module.model2.bias'])