[c1b1c5]: / ViTPose / tests / test_losses / test_mesh_losses.py

Download this file

164 lines (145 with data), 5.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from numpy.testing import assert_almost_equal
from mmpose.models import build_loss
from mmpose.models.utils.geometry import batch_rodrigues
def test_mesh_loss():
"""test mesh loss."""
loss_cfg = dict(
type='MeshLoss',
joints_2d_loss_weight=1,
joints_3d_loss_weight=1,
vertex_loss_weight=1,
smpl_pose_loss_weight=1,
smpl_beta_loss_weight=1,
img_res=256,
focal_length=5000)
loss = build_loss(loss_cfg)
smpl_pose = torch.zeros([1, 72], dtype=torch.float32)
smpl_rotmat = batch_rodrigues(smpl_pose.view(-1, 3)).view(-1, 24, 3, 3)
smpl_beta = torch.zeros([1, 10], dtype=torch.float32)
camera = torch.tensor([[1, 0, 0]], dtype=torch.float32)
vertices = torch.rand([1, 6890, 3], dtype=torch.float32)
joints_3d = torch.ones([1, 24, 3], dtype=torch.float32)
joints_2d = loss.project_points(joints_3d, camera) + (256 - 1) / 2
fake_pred = {}
fake_pred['pose'] = smpl_rotmat
fake_pred['beta'] = smpl_beta
fake_pred['camera'] = camera
fake_pred['vertices'] = vertices
fake_pred['joints_3d'] = joints_3d
fake_gt = {}
fake_gt['pose'] = smpl_pose
fake_gt['beta'] = smpl_beta
fake_gt['vertices'] = vertices
fake_gt['has_smpl'] = torch.ones(1, dtype=torch.float32)
fake_gt['joints_3d'] = joints_3d
fake_gt['joints_3d_visible'] = torch.ones([1, 24, 1], dtype=torch.float32)
fake_gt['joints_2d'] = joints_2d
fake_gt['joints_2d_visible'] = torch.ones([1, 24, 1], dtype=torch.float32)
losses = loss(fake_pred, fake_gt)
assert torch.allclose(losses['vertex_loss'], torch.tensor(0.))
assert torch.allclose(losses['smpl_pose_loss'], torch.tensor(0.))
assert torch.allclose(losses['smpl_beta_loss'], torch.tensor(0.))
assert torch.allclose(losses['joints_3d_loss'], torch.tensor(0.))
assert torch.allclose(losses['joints_2d_loss'], torch.tensor(0.))
fake_pred = {}
fake_pred['pose'] = smpl_rotmat + 1
fake_pred['beta'] = smpl_beta + 1
fake_pred['camera'] = camera
fake_pred['vertices'] = vertices + 1
fake_pred['joints_3d'] = joints_3d.clone()
joints_3d_t = joints_3d.clone()
joints_3d_t[:, 0] = joints_3d_t[:, 0] + 1
fake_gt = {}
fake_gt['pose'] = smpl_pose
fake_gt['beta'] = smpl_beta
fake_gt['vertices'] = vertices
fake_gt['has_smpl'] = torch.ones(1, dtype=torch.float32)
fake_gt['joints_3d'] = joints_3d_t
fake_gt['joints_3d_visible'] = torch.ones([1, 24, 1], dtype=torch.float32)
fake_gt['joints_2d'] = joints_2d + (256 - 1) / 2
fake_gt['joints_2d_visible'] = torch.ones([1, 24, 1], dtype=torch.float32)
losses = loss(fake_pred, fake_gt)
assert torch.allclose(losses['vertex_loss'], torch.tensor(1.))
assert torch.allclose(losses['smpl_pose_loss'], torch.tensor(1.))
assert torch.allclose(losses['smpl_beta_loss'], torch.tensor(1.))
assert torch.allclose(losses['joints_3d_loss'], torch.tensor(0.5 / 24))
assert torch.allclose(losses['joints_2d_loss'], torch.tensor(0.5))
def test_gan_loss():
"""test gan loss."""
with pytest.raises(NotImplementedError):
loss_cfg = dict(
type='GANLoss',
gan_type='test',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=1)
_ = build_loss(loss_cfg)
input_1 = torch.ones(1, 1)
input_2 = torch.ones(1, 3, 6, 6) * 2
# vanilla
loss_cfg = dict(
type='GANLoss',
gan_type='vanilla',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=2.0)
gan_loss = build_loss(loss_cfg)
loss = gan_loss(input_1, True, is_disc=False)
assert_almost_equal(loss.item(), 0.6265233)
loss = gan_loss(input_1, False, is_disc=False)
assert_almost_equal(loss.item(), 2.6265232)
loss = gan_loss(input_1, True, is_disc=True)
assert_almost_equal(loss.item(), 0.3132616)
loss = gan_loss(input_1, False, is_disc=True)
assert_almost_equal(loss.item(), 1.3132616)
# lsgan
loss_cfg = dict(
type='GANLoss',
gan_type='lsgan',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=2.0)
gan_loss = build_loss(loss_cfg)
loss = gan_loss(input_2, True, is_disc=False)
assert_almost_equal(loss.item(), 2.0)
loss = gan_loss(input_2, False, is_disc=False)
assert_almost_equal(loss.item(), 8.0)
loss = gan_loss(input_2, True, is_disc=True)
assert_almost_equal(loss.item(), 1.0)
loss = gan_loss(input_2, False, is_disc=True)
assert_almost_equal(loss.item(), 4.0)
# wgan
loss_cfg = dict(
type='GANLoss',
gan_type='wgan',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=2.0)
gan_loss = build_loss(loss_cfg)
loss = gan_loss(input_2, True, is_disc=False)
assert_almost_equal(loss.item(), -4.0)
loss = gan_loss(input_2, False, is_disc=False)
assert_almost_equal(loss.item(), 4)
loss = gan_loss(input_2, True, is_disc=True)
assert_almost_equal(loss.item(), -2.0)
loss = gan_loss(input_2, False, is_disc=True)
assert_almost_equal(loss.item(), 2.0)
# hinge
loss_cfg = dict(
type='GANLoss',
gan_type='hinge',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=2.0)
gan_loss = build_loss(loss_cfg)
loss = gan_loss(input_2, True, is_disc=False)
assert_almost_equal(loss.item(), -4.0)
loss = gan_loss(input_2, False, is_disc=False)
assert_almost_equal(loss.item(), -4.0)
loss = gan_loss(input_2, True, is_disc=True)
assert_almost_equal(loss.item(), 0.0)
loss = gan_loss(input_2, False, is_disc=True)
assert_almost_equal(loss.item(), 3.0)