[c1b1c5]: / ViTPose / tests / test_backbones / test_vipnas_resnet.py

Download this file

342 lines (292 with data), 11.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn as nn
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmpose.models.backbones import ViPNAS_ResNet
from mmpose.models.backbones.vipnas_resnet import (ViPNAS_Bottleneck,
ViPNAS_ResLayer,
get_expansion)
def is_block(modules):
"""Check if is ViPNAS_ResNet building block."""
if isinstance(modules, (ViPNAS_Bottleneck)):
return True
return False
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.equal(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.equal(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_get_expansion():
assert get_expansion(ViPNAS_Bottleneck, 2) == 2
assert get_expansion(ViPNAS_Bottleneck) == 1
class MyResBlock(nn.Module):
expansion = 8
assert get_expansion(MyResBlock) == 8
# expansion must be an integer or None
with pytest.raises(TypeError):
get_expansion(ViPNAS_Bottleneck, '0')
# expansion is not specified and cannot be inferred
with pytest.raises(TypeError):
class SomeModule(nn.Module):
pass
get_expansion(SomeModule)
def test_vipnas_bottleneck():
# style must be in ['pytorch', 'caffe']
with pytest.raises(AssertionError):
ViPNAS_Bottleneck(64, 64, style='tensorflow')
# expansion must be divisible by out_channels
with pytest.raises(AssertionError):
ViPNAS_Bottleneck(64, 64, expansion=3)
# Test ViPNAS_Bottleneck style
block = ViPNAS_Bottleneck(64, 64, stride=2, style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = ViPNAS_Bottleneck(64, 64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# ViPNAS_Bottleneck with stride 1
block = ViPNAS_Bottleneck(64, 64, style='pytorch')
assert block.in_channels == 64
assert block.mid_channels == 16
assert block.out_channels == 64
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 16
assert block.conv1.kernel_size == (1, 1)
assert block.conv2.in_channels == 16
assert block.conv2.out_channels == 16
assert block.conv2.kernel_size == (3, 3)
assert block.conv3.in_channels == 16
assert block.conv3.out_channels == 64
assert block.conv3.kernel_size == (1, 1)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == (1, 64, 56, 56)
# ViPNAS_Bottleneck with stride 1 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1), nn.BatchNorm2d(128))
block = ViPNAS_Bottleneck(64, 128, style='pytorch', downsample=downsample)
assert block.in_channels == 64
assert block.mid_channels == 32
assert block.out_channels == 128
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 32
assert block.conv1.kernel_size == (1, 1)
assert block.conv2.in_channels == 32
assert block.conv2.out_channels == 32
assert block.conv2.kernel_size == (3, 3)
assert block.conv3.in_channels == 32
assert block.conv3.out_channels == 128
assert block.conv3.kernel_size == (1, 1)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == (1, 128, 56, 56)
# ViPNAS_Bottleneck with stride 2 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2), nn.BatchNorm2d(128))
block = ViPNAS_Bottleneck(
64, 128, stride=2, style='pytorch', downsample=downsample)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == (1, 128, 28, 28)
# ViPNAS_Bottleneck with expansion 2
block = ViPNAS_Bottleneck(64, 64, style='pytorch', expansion=2)
assert block.in_channels == 64
assert block.mid_channels == 32
assert block.out_channels == 64
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 32
assert block.conv1.kernel_size == (1, 1)
assert block.conv2.in_channels == 32
assert block.conv2.out_channels == 32
assert block.conv2.kernel_size == (3, 3)
assert block.conv3.in_channels == 32
assert block.conv3.out_channels == 64
assert block.conv3.kernel_size == (1, 1)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == (1, 64, 56, 56)
# Test ViPNAS_Bottleneck with checkpointing
block = ViPNAS_Bottleneck(64, 64, with_cp=True)
block.train()
assert block.with_cp
x = torch.randn(1, 64, 56, 56, requires_grad=True)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_vipnas_bottleneck_reslayer():
# 3 Bottleneck w/o downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32)
assert len(layer) == 3
for i in range(3):
assert layer[i].in_channels == 32
assert layer[i].out_channels == 32
assert layer[i].downsample is None
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
assert x_out.shape == (1, 32, 56, 56)
# 3 ViPNAS_Bottleneck w/ stride 1 and downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64)
assert len(layer) == 3
assert layer[0].in_channels == 32
assert layer[0].out_channels == 64
assert layer[0].stride == 1
assert layer[0].conv1.out_channels == 64
assert layer[0].downsample is not None and len(layer[0].downsample) == 2
assert isinstance(layer[0].downsample[0], nn.Conv2d)
assert layer[0].downsample[0].stride == (1, 1)
for i in range(1, 3):
assert layer[i].in_channels == 64
assert layer[i].out_channels == 64
assert layer[i].conv1.out_channels == 64
assert layer[i].stride == 1
assert layer[i].downsample is None
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
assert x_out.shape == (1, 64, 56, 56)
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64, stride=2)
assert len(layer) == 3
assert layer[0].in_channels == 32
assert layer[0].out_channels == 64
assert layer[0].stride == 2
assert layer[0].conv1.out_channels == 64
assert layer[0].downsample is not None and len(layer[0].downsample) == 2
assert isinstance(layer[0].downsample[0], nn.Conv2d)
assert layer[0].downsample[0].stride == (2, 2)
for i in range(1, 3):
assert layer[i].in_channels == 64
assert layer[i].out_channels == 64
assert layer[i].conv1.out_channels == 64
assert layer[i].stride == 1
assert layer[i].downsample is None
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
assert x_out.shape == (1, 64, 28, 28)
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample with avg pool
layer = ViPNAS_ResLayer(
ViPNAS_Bottleneck, 3, 32, 64, stride=2, avg_down=True)
assert len(layer) == 3
assert layer[0].in_channels == 32
assert layer[0].out_channels == 64
assert layer[0].stride == 2
assert layer[0].conv1.out_channels == 64
assert layer[0].downsample is not None and len(layer[0].downsample) == 3
assert isinstance(layer[0].downsample[0], nn.AvgPool2d)
assert layer[0].downsample[0].stride == 2
for i in range(1, 3):
assert layer[i].in_channels == 64
assert layer[i].out_channels == 64
assert layer[i].conv1.out_channels == 64
assert layer[i].stride == 1
assert layer[i].downsample is None
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
assert x_out.shape == (1, 64, 28, 28)
# 3 ViPNAS_Bottleneck with custom expansion
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32, expansion=2)
assert len(layer) == 3
for i in range(3):
assert layer[i].in_channels == 32
assert layer[i].out_channels == 32
assert layer[i].stride == 1
assert layer[i].conv1.out_channels == 16
assert layer[i].downsample is None
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
assert x_out.shape == (1, 32, 56, 56)
def test_resnet():
"""Test ViPNAS_ResNet backbone."""
with pytest.raises(KeyError):
# ViPNAS_ResNet depth should be in [50]
ViPNAS_ResNet(20)
with pytest.raises(AssertionError):
# In ViPNAS_ResNet: 1 <= num_stages <= 4
ViPNAS_ResNet(50, num_stages=0)
with pytest.raises(AssertionError):
# In ViPNAS_ResNet: 1 <= num_stages <= 4
ViPNAS_ResNet(50, num_stages=5)
with pytest.raises(AssertionError):
# len(strides) == len(dilations) == num_stages
ViPNAS_ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with pytest.raises(TypeError):
# pretrained must be a string path
model = ViPNAS_ResNet(50)
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ViPNAS_ResNet(50, style='tensorflow')
# Test ViPNAS_ResNet50 norm_eval=True
model = ViPNAS_ResNet(50, norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ViPNAS_ResNet50 with first stage frozen
frozen_stages = 1
model = ViPNAS_ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
assert model.norm1.training is False
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ViPNAS_ResNet50 with BatchNorm forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 80, 56, 56)
assert feat[1].shape == (1, 160, 28, 28)
assert feat[2].shape == (1, 304, 14, 14)
assert feat[3].shape == (1, 608, 7, 7)
# Test ViPNAS_ResNet50 with layers 1, 2, 3 out forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == (1, 80, 56, 56)
assert feat[1].shape == (1, 160, 28, 28)
assert feat[2].shape == (1, 304, 14, 14)
# Test ViPNAS_ResNet50 with layers 3 (top feature maps) out forward
model = ViPNAS_ResNet(50, out_indices=(3, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == (1, 608, 7, 7)
# Test ViPNAS_ResNet50 with checkpoint forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 80, 56, 56)
assert feat[1].shape == (1, 160, 28, 28)
assert feat[2].shape == (1, 304, 14, 14)
assert feat[3].shape == (1, 608, 7, 7)