[c1b1c5]: / ViTPose / tests / test_backbones / test_cpm.py

Download this file

65 lines (50 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmpose.models import CPM
from mmpose.models.backbones.cpm import CpmBlock
def test_cpm_block():
with pytest.raises(AssertionError):
# len(channels) == len(kernels)
CpmBlock(
3, channels=[3, 3, 3], kernels=[
1,
])
# Test CPM Block
model = CpmBlock(3, channels=[3, 3, 3], kernels=[1, 1, 1])
model.train()
imgs = torch.randn(1, 3, 10, 10)
feat = model(imgs)
assert feat.shape == torch.Size([1, 3, 10, 10])
def test_cpm_backbone():
with pytest.raises(AssertionError):
# CPM's num_stacks should larger than 0
CPM(in_channels=3, out_channels=17, num_stages=-1)
with pytest.raises(AssertionError):
# CPM's in_channels should be 3
CPM(in_channels=2, out_channels=17)
# Test CPM
model = CPM(in_channels=3, out_channels=17, num_stages=1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 256, 192)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 17, 32, 24])
imgs = torch.randn(1, 3, 384, 288)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 17, 48, 36])
imgs = torch.randn(1, 3, 368, 368)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 17, 46, 46])
# Test CPM multi-stages
model = CPM(in_channels=3, out_channels=17, num_stages=2)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 368, 368)
feat = model(imgs)
assert len(feat) == 2
assert feat[0].shape == torch.Size([1, 17, 46, 46])
assert feat[1].shape == torch.Size([1, 17, 46, 46])