[c1b1c5]: / ViTPose / tests / test_apis / test_inference_tracking.py

Download this file

158 lines (140 with data), 5.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) OpenMMLab. All rights reserved.
from mmpose.apis import (get_track_id, inference_bottom_up_pose_model,
inference_top_down_pose_model, init_pose_model,
vis_pose_tracking_result)
from mmpose.datasets.dataset_info import DatasetInfo
def test_top_down_pose_tracking_demo():
# COCO demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'coco/res50_coco_256x192.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
person_result = [{'bbox': [50, 50, 50, 100]}]
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, [], next_id=0)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
pose_results_last = pose_results
# AIC demo
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'aic/res50_aic_256x192.py',
None,
device='cpu')
image_name = 'tests/data/aic/054d9ce9201beffc76e5ff2169d2af2f027002ca.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, pose_results_last,
next_id)
for pose_result in pose_results:
del pose_result['bbox']
pose_results, next_id = get_track_id(pose_results, pose_results_last,
next_id)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# OneHand10K demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'onehand10k/res50_onehand10k_256x256.py',
None,
device='cpu')
image_name = 'tests/data/onehand10k/9.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name, [{
'bbox': [10, 10, 30, 30]
}],
format='xywh',
dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, pose_results_last,
next_id)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# InterHand2D demo
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'interhand2d/res50_interhand2d_all_256x256.py',
None,
device='cpu')
image_name = 'tests/data/interhand2.6m/image2017.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name, [{
'bbox': [50, 50, 0, 0]
}],
format='xywh',
dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, [], next_id=0)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
pose_results_last = pose_results
# MPII demo
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'mpii/res50_mpii_256x256.py',
None,
device='cpu')
image_name = 'tests/data/mpii/004645041.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name, [{
'bbox': [50, 50, 0, 0]
}],
format='xywh',
dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, pose_results_last,
next_id)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
def test_bottom_up_pose_tracking_demo():
# COCO demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/associative_embedding/'
'coco/res50_coco_512x512.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
pose_results, _ = inference_bottom_up_pose_model(
pose_model, image_name, dataset_info=dataset_info)
pose_results, next_id = get_track_id(pose_results, [], next_id=0)
# show the results
vis_pose_tracking_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
pose_results_last = pose_results
# oks
pose_results, next_id = get_track_id(
pose_results, pose_results_last, next_id=next_id, use_oks=True)
pose_results_last = pose_results
# one_euro
pose_results, next_id = get_track_id(
pose_results, pose_results_last, next_id=next_id, use_one_euro=True)