[c1b1c5]: / ViTPose / tests / test_apis / test_inference_3d.py

Download this file

211 lines (173 with data), 6.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmpose.apis import (extract_pose_sequence, inference_interhand_3d_model,
inference_mesh_model, inference_pose_lifter_model,
init_pose_model, vis_3d_mesh_result,
vis_3d_pose_result)
from mmpose.datasets.dataset_info import DatasetInfo
from tests.utils.mesh_utils import generate_smpl_weight_file
def test_pose_lifter_demo():
# H36M demo
pose_model = init_pose_model(
'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
'h36m/simplebaseline3d_h36m.py',
None,
device='cpu')
pose_det_result = {
'keypoints': np.zeros((17, 3)),
'bbox': [50, 50, 50, 50],
'track_id': 0,
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
}
pose_results_2d = [[pose_det_result]]
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
pose_results_2d = extract_pose_sequence(
pose_results_2d, frame_idx=0, causal=False, seq_len=1, step=1)
_ = inference_pose_lifter_model(
pose_model,
pose_results_2d,
dataset_info=dataset_info,
with_track_id=False)
pose_lift_results = inference_pose_lifter_model(
pose_model,
pose_results_2d,
dataset_info=dataset_info,
with_track_id=True)
for res in pose_lift_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
pose_lift_results,
img=pose_results_2d[0][0]['image_name'],
dataset_info=dataset_info)
# test special cases
# Empty 2D results
_ = inference_pose_lifter_model(
pose_model, [[]], dataset_info=dataset_info, with_track_id=False)
if torch.cuda.is_available():
_ = inference_pose_lifter_model(
pose_model.cuda(),
pose_results_2d,
dataset_info=dataset_info,
with_track_id=False)
# test videopose3d
pose_model = init_pose_model(
'configs/body/3d_kpt_sview_rgb_vid/video_pose_lift/h36m/'
'videopose3d_h36m_243frames_fullconv_supervised_cpn_ft.py',
None,
device='cpu')
pose_det_result_0 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 0,
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
}
pose_det_result_1 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 1,
'image_name': 'tests/data/h36m/S5_SittingDown.54138969_002061.jpg',
}
pose_det_result_2 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 2,
'image_name': 'tests/data/h36m/S7_Greeting.55011271_000396.jpg',
}
pose_results_2d = [[pose_det_result_0], [pose_det_result_1],
[pose_det_result_2]]
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
seq_len = pose_model.cfg.test_data_cfg.seq_len
pose_results_2d_seq = extract_pose_sequence(
pose_results_2d, 1, causal=False, seq_len=seq_len, step=1)
pose_lift_results = inference_pose_lifter_model(
pose_model,
pose_results_2d_seq,
dataset_info=dataset_info,
with_track_id=True,
image_size=[1000, 1000],
norm_pose_2d=True)
for res in pose_lift_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
pose_lift_results,
img=pose_results_2d[0][0]['image_name'],
dataset_info=dataset_info,
)
def test_interhand3d_demo():
# H36M demo
pose_model = init_pose_model(
'configs/hand/3d_kpt_sview_rgb_img/internet/interhand3d/'
'res50_interhand3d_all_256x256.py',
None,
device='cpu')
image_name = 'tests/data/interhand2.6m/image2017.jpg'
det_result = {
'image_name': image_name,
'bbox': [50, 50, 50, 50], # bbox format is 'xywh'
'camera_param': None,
'keypoints_3d_gt': None
}
det_results = [det_result]
dataset = pose_model.cfg.data['test']['type']
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
pose_results = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset=dataset)
for res in pose_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
result=pose_results,
img=det_results[0]['image_name'],
dataset_info=dataset_info,
)
# test special cases
# Empty det results
_ = inference_interhand_3d_model(
pose_model, image_name, [], dataset=dataset)
if torch.cuda.is_available():
_ = inference_interhand_3d_model(
pose_model.cuda(), image_name, det_results, dataset=dataset)
with pytest.raises(NotImplementedError):
_ = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset='test')
def test_body_mesh_demo():
# H36M demo
config = 'configs/body/3d_mesh_sview_rgb_img/hmr' \
'/mixed/res50_mixed_224x224.py'
config = mmcv.Config.fromfile(config)
config.model.mesh_head.smpl_mean_params = \
'tests/data/smpl/smpl_mean_params.npz'
pose_model = None
with tempfile.TemporaryDirectory() as tmpdir:
config.model.smpl.smpl_path = tmpdir
config.model.smpl.joints_regressor = osp.join(
tmpdir, 'test_joint_regressor.npy')
# generate weight file for SMPL model.
generate_smpl_weight_file(tmpdir)
pose_model = init_pose_model(config, device='cpu')
assert pose_model is not None, 'Fail to build pose model'
image_name = 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg'
det_result = {
'keypoints': np.zeros((17, 3)),
'bbox': [50, 50, 50, 50],
'image_name': image_name,
}
# make person bounding boxes
person_results = [det_result]
dataset = pose_model.cfg.data['test']['type']
# test a single image, with a list of bboxes
pose_results = inference_mesh_model(
pose_model,
image_name,
person_results,
bbox_thr=None,
format='xywh',
dataset=dataset)
vis_3d_mesh_result(pose_model, pose_results, image_name)