[c1b1c5]: / ViTPose / mmpose / datasets / pipelines / mesh_transform.py

Download this file

400 lines (307 with data), 12.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import mmcv
import numpy as np
import torch
from mmpose.core.post_processing import (affine_transform, fliplr_joints,
get_affine_transform)
from mmpose.datasets.builder import PIPELINES
def _flip_smpl_pose(pose):
"""Flip SMPL pose parameters horizontally.
Args:
pose (np.ndarray([72])): SMPL pose parameters
Returns:
pose_flipped
"""
flippedParts = [
0, 1, 2, 6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13, 14, 18, 19,
20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33, 34, 35, 30, 31, 32, 36, 37,
38, 42, 43, 44, 39, 40, 41, 45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58,
59, 54, 55, 56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68
]
pose_flipped = pose[flippedParts]
# Negate the second and the third dimension of the axis-angle
pose_flipped[1::3] = -pose_flipped[1::3]
pose_flipped[2::3] = -pose_flipped[2::3]
return pose_flipped
def _flip_iuv(iuv, uv_type='BF'):
"""Flip IUV image horizontally.
Note:
IUV image height: H
IUV image width: W
Args:
iuv np.ndarray([H, W, 3]): IUV image
uv_type (str): The type of the UV map.
Candidate values:
'DP': The UV map used in DensePose project.
'SMPL': The default UV map of SMPL model.
'BF': The UV map used in DecoMR project.
Default: 'BF'
Returns:
iuv_flipped np.ndarray([H, W, 3]): Flipped IUV image
"""
assert uv_type in ['DP', 'SMPL', 'BF']
if uv_type == 'BF':
iuv_flipped = iuv[:, ::-1, :]
iuv_flipped[:, :, 1] = 255 - iuv_flipped[:, :, 1]
else:
# The flip of other UV map is complex, not finished yet.
raise NotImplementedError(
f'The flip of {uv_type} UV map is not implemented yet.')
return iuv_flipped
def _construct_rotation_matrix(rot, size=3):
"""Construct the in-plane rotation matrix.
Args:
rot (float): Rotation angle (degree).
size (int): The size of the rotation matrix.
Candidate Values: 2, 3. Defaults to 3.
Returns:
rot_mat (np.ndarray([size, size]): Rotation matrix.
"""
rot_mat = np.eye(size, dtype=np.float32)
if rot != 0:
rot_rad = np.deg2rad(rot)
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
return rot_mat
def _rotate_joints_3d(joints_3d, rot):
"""Rotate the 3D joints in the local coordinates.
Note:
Joints number: K
Args:
joints_3d (np.ndarray([K, 3])): Coordinates of keypoints.
rot (float): Rotation angle (degree).
Returns:
joints_3d_rotated
"""
# in-plane rotation
# 3D joints are rotated counterclockwise,
# so the rot angle is inversed.
rot_mat = _construct_rotation_matrix(-rot, 3)
joints_3d_rotated = np.einsum('ij,kj->ki', rot_mat, joints_3d)
joints_3d_rotated = joints_3d_rotated.astype('float32')
return joints_3d_rotated
def _rotate_smpl_pose(pose, rot):
"""Rotate SMPL pose parameters. SMPL (https://smpl.is.tue.mpg.de/) is a 3D
human model.
Args:
pose (np.ndarray([72])): SMPL pose parameters
rot (float): Rotation angle (degree).
Returns:
pose_rotated
"""
pose_rotated = pose.copy()
if rot != 0:
rot_mat = _construct_rotation_matrix(-rot)
orient = pose[:3]
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(orient)
# apply the global rotation to the global orientation
res_rot, _ = cv2.Rodrigues(np.dot(rot_mat, per_rdg))
pose_rotated[:3] = (res_rot.T)[0]
return pose_rotated
def _flip_joints_3d(joints_3d, joints_3d_visible, flip_pairs):
"""Flip human joints in 3D space horizontally.
Note:
num_keypoints: K
Args:
joints_3d (np.ndarray([K, 3])): Coordinates of keypoints.
joints_3d_visible (np.ndarray([K, 1])): Visibility of keypoints.
flip_pairs (list[tuple()]): Pairs of keypoints which are mirrored
(for example, left ear -- right ear).
Returns:
joints_3d_flipped, joints_3d_visible_flipped
"""
assert len(joints_3d) == len(joints_3d_visible)
joints_3d_flipped = joints_3d.copy()
joints_3d_visible_flipped = joints_3d_visible.copy()
# Swap left-right parts
for left, right in flip_pairs:
joints_3d_flipped[left, :] = joints_3d[right, :]
joints_3d_flipped[right, :] = joints_3d[left, :]
joints_3d_visible_flipped[left, :] = joints_3d_visible[right, :]
joints_3d_visible_flipped[right, :] = joints_3d_visible[left, :]
# Flip horizontally
joints_3d_flipped[:, 0] = -joints_3d_flipped[:, 0]
joints_3d_flipped = joints_3d_flipped * joints_3d_visible_flipped
return joints_3d_flipped, joints_3d_visible_flipped
@PIPELINES.register_module()
class LoadIUVFromFile:
"""Loading IUV image from file."""
def __init__(self, to_float32=False):
self.to_float32 = to_float32
self.color_type = 'color'
# channel relations: iuv->bgr
self.channel_order = 'bgr'
def __call__(self, results):
"""Loading image from file."""
has_iuv = results['has_iuv']
use_iuv = results['ann_info']['use_IUV']
if has_iuv and use_iuv:
iuv_file = results['iuv_file']
iuv = mmcv.imread(iuv_file, self.color_type, self.channel_order)
if iuv is None:
raise ValueError(f'Fail to read {iuv_file}')
else:
has_iuv = 0
iuv = None
results['has_iuv'] = has_iuv
results['iuv'] = iuv
return results
@PIPELINES.register_module()
class IUVToTensor:
"""Transform IUV image to part index mask and uv coordinates image. The 3
channels of IUV image means: part index, u coordinates, v coordinates.
Required key: 'iuv', 'ann_info'.
Modifies key: 'part_index', 'uv_coordinates'.
Args:
results (dict): contain all information about training.
"""
def __call__(self, results):
iuv = results['iuv']
if iuv is None:
H, W = results['ann_info']['iuv_size']
part_index = torch.zeros([1, H, W], dtype=torch.long)
uv_coordinates = torch.zeros([2, H, W], dtype=torch.float32)
else:
part_index = torch.LongTensor(iuv[:, :, 0])[None, :, :]
uv_coordinates = torch.FloatTensor(iuv[:, :, 1:]) / 255
uv_coordinates = uv_coordinates.permute(2, 0, 1)
results['part_index'] = part_index
results['uv_coordinates'] = uv_coordinates
return results
@PIPELINES.register_module()
class MeshRandomChannelNoise:
"""Data augmentation with random channel noise.
Required keys: 'img'
Modifies key: 'img'
Args:
noise_factor (float): Multiply each channel with
a factor between``[1-scale_factor, 1+scale_factor]``
"""
def __init__(self, noise_factor=0.4):
self.noise_factor = noise_factor
def __call__(self, results):
"""Perform data augmentation with random channel noise."""
img = results['img']
# Each channel is multiplied with a number
# in the area [1-self.noise_factor, 1+self.noise_factor]
pn = np.random.uniform(1 - self.noise_factor, 1 + self.noise_factor,
(1, 3))
img = cv2.multiply(img, pn)
results['img'] = img
return results
@PIPELINES.register_module()
class MeshRandomFlip:
"""Data augmentation with random image flip.
Required keys: 'img', 'joints_2d','joints_2d_visible', 'joints_3d',
'joints_3d_visible', 'center', 'pose', 'iuv' and 'ann_info'.
Modifies key: 'img', 'joints_2d','joints_2d_visible', 'joints_3d',
'joints_3d_visible', 'center', 'pose', 'iuv'.
Args:
flip_prob (float): Probability of flip.
"""
def __init__(self, flip_prob=0.5):
self.flip_prob = flip_prob
def __call__(self, results):
"""Perform data augmentation with random image flip."""
if np.random.rand() > self.flip_prob:
return results
img = results['img']
joints_2d = results['joints_2d']
joints_2d_visible = results['joints_2d_visible']
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
pose = results['pose']
center = results['center']
img = img[:, ::-1, :]
pose = _flip_smpl_pose(pose)
joints_2d, joints_2d_visible = fliplr_joints(
joints_2d, joints_2d_visible, img.shape[1],
results['ann_info']['flip_pairs'])
joints_3d, joints_3d_visible = _flip_joints_3d(
joints_3d, joints_3d_visible, results['ann_info']['flip_pairs'])
center[0] = img.shape[1] - center[0] - 1
if 'iuv' in results.keys():
iuv = results['iuv']
if iuv is not None:
iuv = _flip_iuv(iuv, results['ann_info']['uv_type'])
results['iuv'] = iuv
results['img'] = img
results['joints_2d'] = joints_2d
results['joints_2d_visible'] = joints_2d_visible
results['joints_3d'] = joints_3d
results['joints_3d_visible'] = joints_3d_visible
results['pose'] = pose
results['center'] = center
return results
@PIPELINES.register_module()
class MeshGetRandomScaleRotation:
"""Data augmentation with random scaling & rotating.
Required key: 'scale'. Modifies key: 'scale' and 'rotation'.
Args:
rot_factor (int): Rotating to ``[-2*rot_factor, 2*rot_factor]``.
scale_factor (float): Scaling to ``[1-scale_factor, 1+scale_factor]``.
rot_prob (float): Probability of random rotation.
"""
def __init__(self, rot_factor=30, scale_factor=0.25, rot_prob=0.6):
self.rot_factor = rot_factor
self.scale_factor = scale_factor
self.rot_prob = rot_prob
def __call__(self, results):
"""Perform data augmentation with random scaling & rotating."""
s = results['scale']
sf = self.scale_factor
rf = self.rot_factor
s_factor = np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
s = s * s_factor
r_factor = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)
r = r_factor if np.random.rand() <= self.rot_prob else 0
results['scale'] = s
results['rotation'] = r
return results
@PIPELINES.register_module()
class MeshAffine:
"""Affine transform the image to get input image. Affine transform the 2D
keypoints, 3D kepoints and IUV image too.
Required keys: 'img', 'joints_2d','joints_2d_visible', 'joints_3d',
'joints_3d_visible', 'pose', 'iuv', 'ann_info','scale', 'rotation' and
'center'. Modifies key: 'img', 'joints_2d','joints_2d_visible',
'joints_3d', 'pose', 'iuv'.
"""
def __call__(self, results):
image_size = results['ann_info']['image_size']
img = results['img']
joints_2d = results['joints_2d']
joints_2d_visible = results['joints_2d_visible']
joints_3d = results['joints_3d']
pose = results['pose']
c = results['center']
s = results['scale']
r = results['rotation']
trans = get_affine_transform(c, s, r, image_size)
img = cv2.warpAffine(
img,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR)
for i in range(results['ann_info']['num_joints']):
if joints_2d_visible[i, 0] > 0.0:
joints_2d[i] = affine_transform(joints_2d[i], trans)
joints_3d = _rotate_joints_3d(joints_3d, r)
pose = _rotate_smpl_pose(pose, r)
results['img'] = img
results['joints_2d'] = joints_2d
results['joints_2d_visible'] = joints_2d_visible
results['joints_3d'] = joints_3d
results['pose'] = pose
if 'iuv' in results.keys():
iuv = results['iuv']
if iuv is not None:
iuv_size = results['ann_info']['iuv_size']
iuv = cv2.warpAffine(
iuv,
trans, (int(iuv_size[0]), int(iuv_size[1])),
flags=cv2.INTER_NEAREST)
results['iuv'] = iuv
return results