[c1b1c5]: / ViTPose / demo / bottom_up_img_demo.py

Download this file

128 lines (110 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import warnings
from argparse import ArgumentParser
import mmcv
from mmpose.apis import (inference_bottom_up_pose_model, init_pose_model,
vis_pose_result)
from mmpose.datasets import DatasetInfo
def main():
"""Visualize the demo images."""
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for detection')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument(
'--img-path',
type=str,
help='Path to an image file or a image folder.')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--out-img-root',
type=str,
default='',
help='Root of the output img file. '
'Default not saving the visualization images.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--pose-nms-thr',
type=float,
default=0.9,
help='OKS threshold for pose NMS')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
args = parser.parse_args()
assert args.show or (args.out_img_root != '')
# prepare image list
if osp.isfile(args.img_path):
image_list = [args.img_path]
elif osp.isdir(args.img_path):
image_list = [
osp.join(args.img_path, fn) for fn in os.listdir(args.img_path)
if fn.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp'))
]
else:
raise ValueError('Image path should be an image or image folder.'
f'Got invalid image path: {args.img_path}')
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
if dataset_info is None:
warnings.warn(
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
assert (dataset == 'BottomUpCocoDataset')
else:
dataset_info = DatasetInfo(dataset_info)
# optional
return_heatmap = False
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
# process each image
for image_name in mmcv.track_iter_progress(image_list):
# test a single image, with a list of bboxes.
pose_results, returned_outputs = inference_bottom_up_pose_model(
pose_model,
image_name,
dataset=dataset,
dataset_info=dataset_info,
pose_nms_thr=args.pose_nms_thr,
return_heatmap=return_heatmap,
outputs=output_layer_names)
if args.out_img_root == '':
out_file = None
else:
os.makedirs(args.out_img_root, exist_ok=True)
out_file = os.path.join(
args.out_img_root,
f'vis_{osp.splitext(osp.basename(image_name))[0]}.jpg')
# show the results
vis_pose_result(
pose_model,
image_name,
pose_results,
radius=args.radius,
thickness=args.thickness,
dataset=dataset,
dataset_info=dataset_info,
kpt_score_thr=args.kpt_thr,
show=args.show,
out_file=out_file)
if __name__ == '__main__':
main()