|
a |
|
b/src/optimize.py |
|
|
1 |
# Script for optimizing the ratio parameters |
|
|
2 |
|
|
|
3 |
import torch |
|
|
4 |
import torch.nn as nn |
|
|
5 |
import os |
|
|
6 |
from torch.utils.data import Dataset |
|
|
7 |
from torch.utils.data import DataLoader |
|
|
8 |
import pickle |
|
|
9 |
import numpy as np |
|
|
10 |
import time |
|
|
11 |
|
|
|
12 |
POSE_MODEL = 'OpenPose' # ViTPose_large, ViTPose_base, OpenPose |
|
|
13 |
|
|
|
14 |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
class Planar_Euclidean_Loss(nn.Module): |
|
|
18 |
''' |
|
|
19 |
Euclidean distance of x,y coordinates between 3D points, ignore z coordinate |
|
|
20 |
''' |
|
|
21 |
|
|
|
22 |
def __init__(self): |
|
|
23 |
super(Planar_Euclidean_Loss, self).__init__() |
|
|
24 |
|
|
|
25 |
def forward(self, pred, target): |
|
|
26 |
loss = torch.nn.functional.mse_loss(pred[0:2,:], target[0:2,:]) # only consider xy-axis |
|
|
27 |
return loss |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
class Target4_Model(nn.Module): |
|
|
31 |
''' |
|
|
32 |
target computation model |
|
|
33 |
''' |
|
|
34 |
|
|
|
35 |
def __init__(self, r1, r2): |
|
|
36 |
super(Target4_Model, self).__init__() |
|
|
37 |
self.r1 = nn.Parameter(torch.tensor(r1), requires_grad=True) |
|
|
38 |
self.r2 = nn.Parameter(torch.tensor(r2), requires_grad=True) |
|
|
39 |
|
|
|
40 |
def forward(self, X1, X2, t2): |
|
|
41 |
X3 = X1 + self.r1 * (X2 - X1) |
|
|
42 |
pred = X3 + self.r2 * torch.norm(X3 - X1) * t2 |
|
|
43 |
return pred |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
class PositionDataset(Dataset): |
|
|
47 |
def __init__(self, X1, X2, t2, target): |
|
|
48 |
self.X1 = X1 |
|
|
49 |
self.X2 = X2 |
|
|
50 |
self.t2 = t2 |
|
|
51 |
self.target = target |
|
|
52 |
|
|
|
53 |
def __len__(self): |
|
|
54 |
return len(self.X1) |
|
|
55 |
|
|
|
56 |
def __getitem__(self, i): |
|
|
57 |
return self.X1[i], self.X2[i], self.t2[i], self.target[i] |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
def optimize_side(data, target, params=[0.35, 0.1], epoch=1000, lr=0.01, use_gpu=False): |
|
|
61 |
if use_gpu and torch.cuda.is_available(): |
|
|
62 |
device = torch.device('cuda') |
|
|
63 |
else: |
|
|
64 |
device = torch.device('cpu') |
|
|
65 |
|
|
|
66 |
X1, X2, t2 = data |
|
|
67 |
dataset = PositionDataset(X1, X2, t2, target) |
|
|
68 |
data_loader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=0) |
|
|
69 |
|
|
|
70 |
model = Target4_Model(*params) |
|
|
71 |
model.to(device) |
|
|
72 |
print('model.state_dict():', model.state_dict()) |
|
|
73 |
opt = torch.optim.SGD(model.parameters(), lr=lr) |
|
|
74 |
loss_fn = Planar_Euclidean_Loss() |
|
|
75 |
|
|
|
76 |
for ep in range(epoch): |
|
|
77 |
total_loss = 0 |
|
|
78 |
for i, data in enumerate(data_loader): |
|
|
79 |
X1, X2, t2, target = data |
|
|
80 |
|
|
|
81 |
X1 = X1.to(device) |
|
|
82 |
X2 = X2.to(device) |
|
|
83 |
t2 = t2.to(device) |
|
|
84 |
target = target.to(device) |
|
|
85 |
|
|
|
86 |
opt.zero_grad() |
|
|
87 |
pred = model.forward(X1, X2, t2) |
|
|
88 |
loss = loss_fn(pred, target) |
|
|
89 |
total_loss += loss.item() |
|
|
90 |
loss.backward() |
|
|
91 |
opt.step() |
|
|
92 |
|
|
|
93 |
if ep % 100 == 0: |
|
|
94 |
print('epoch: {}, loss: {}, r1: {}, r2: {}'.format(ep, total_loss, model.state_dict()['r1'], model.state_dict()['r2'])) |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
def optimize_front_linear(data, target): |
|
|
98 |
''' |
|
|
99 |
Optimize the two ratios using least square. |
|
|
100 |
Only use x&y values. |
|
|
101 |
:X1, X2 --3D coordinates of the right shoulder and the right hip |
|
|
102 |
:t2 -- the direction vector of the line connecting X3 and target |
|
|
103 |
''' |
|
|
104 |
X1, X2, t2 = data[0], data[1], data[2] |
|
|
105 |
|
|
|
106 |
# Onlu use x&y values |
|
|
107 |
X1_xy = np.hstack(X1)[0:2,:].T.reshape(-1, 1) # (2nx1) |
|
|
108 |
X2_xy = np.hstack(X2)[0:2,:].T.reshape(-1, 1) |
|
|
109 |
|
|
|
110 |
r1_coeff = X2_xy - X1_xy # 2nx1 |
|
|
111 |
r2_coeff = (np.hstack(t2)[0:2,:].T * np.sqrt(((np.hstack(X1)-np.hstack(X2))**2).sum(axis=0)).reshape(-1,1)).reshape(-1,1) # 2nx1 |
|
|
112 |
A = np.hstack([r1_coeff, r2_coeff]) |
|
|
113 |
b = np.hstack(target)[0:2,:].T.reshape(-1,1) - X1_xy # reshape (nx2) to (2nx1) |
|
|
114 |
r = np.linalg.pinv(A) @ b |
|
|
115 |
|
|
|
116 |
return r |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
if __name__ == '__main__': |
|
|
120 |
|
|
|
121 |
print("HPE model: ", POSE_MODEL) |
|
|
122 |
# collect data |
|
|
123 |
target12_data = [[], [], []] # list of list of np.array: [X1_list, X2_list, t2_list] |
|
|
124 |
target1_GT = [] # list of np.array |
|
|
125 |
target2_GT = [] |
|
|
126 |
|
|
|
127 |
target4_data = [[], [], []] |
|
|
128 |
target4_GT = [] |
|
|
129 |
|
|
|
130 |
for SUBJECT_NAME in os.listdir('data'): |
|
|
131 |
subject_folder_path = os.path.join('data', SUBJECT_NAME) |
|
|
132 |
if os.path.isfile(subject_folder_path): |
|
|
133 |
continue |
|
|
134 |
|
|
|
135 |
scan_pose = 'front' |
|
|
136 |
with open(subject_folder_path + '/' + scan_pose + '/' + POSE_MODEL + '/position_data.pickle', 'rb') as f: |
|
|
137 |
position_data = pickle.load(f) |
|
|
138 |
|
|
|
139 |
target12_data[0].append(position_data[scan_pose][0]) # X1 |
|
|
140 |
target12_data[1].append(position_data[scan_pose][1]) # X2 |
|
|
141 |
target12_data[2].append(position_data[scan_pose][2]) # t2 |
|
|
142 |
|
|
|
143 |
with open(subject_folder_path + '/' + scan_pose + '/two_cam_gt.pickle', 'rb') as f: |
|
|
144 |
ground_truth = pickle.load(f) |
|
|
145 |
target1_GT.append(ground_truth['target_1']) |
|
|
146 |
target2_GT.append(ground_truth['target_2']) |
|
|
147 |
|
|
|
148 |
# skip outlier for openpose target 4: |
|
|
149 |
if POSE_MODEL == 'OpenPose' and (SUBJECT_NAME == 'charles_xu' or SUBJECT_NAME == 'jingyu_wu'): |
|
|
150 |
continue |
|
|
151 |
|
|
|
152 |
scan_pose = 'side' |
|
|
153 |
with open(subject_folder_path + '/' + scan_pose + '/' + POSE_MODEL + '/position_data.pickle', 'rb') as f: |
|
|
154 |
position_data = pickle.load(f) |
|
|
155 |
|
|
|
156 |
target4_data[0].append(position_data[scan_pose][0]) # X1 |
|
|
157 |
target4_data[1].append(position_data[scan_pose][1]) # X2 |
|
|
158 |
target4_data[2].append(position_data[scan_pose][2]) # t2 |
|
|
159 |
|
|
|
160 |
with open(subject_folder_path + '/' + scan_pose + '/two_cam_gt.pickle', 'rb') as f: |
|
|
161 |
ground_truth = pickle.load(f) |
|
|
162 |
target4_GT.append(ground_truth['target_4']) |
|
|
163 |
|
|
|
164 |
start_time = time.time() |
|
|
165 |
optimize_side(target4_data, target4_GT) |
|
|
166 |
print('training used {:.3f} s'.format(time.time() - start_time)) |
|
|
167 |
|
|
|
168 |
target1_ratio = optimize_front_linear(target12_data, target1_GT) |
|
|
169 |
target2_ratio = optimize_front_linear(target12_data, target2_GT) |
|
|
170 |
print("target1_ratio: \n", target1_ratio) |
|
|
171 |
print("target2_ratio: \n", target2_ratio) |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
|
179 |
|
|
|
180 |
|