[c1b1c5]: / ViTPose / tools / webcam / configs / background / background.py

Download this file

94 lines (93 with data), 3.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) OpenMMLab. All rights reserved.
runner = dict(
# Basic configurations of the runner
name='Matting Effects',
camera_id=0,
camera_fps=10,
synchronous=False,
# Define nodes.
# The configuration of a node usually includes:
# 1. 'type': Node class name
# 2. 'name': Node name
# 3. I/O buffers (e.g. 'input_buffer', 'output_buffer'): specify the
# input and output buffer names. This may depend on the node class.
# 4. 'enable_key': assign a hot-key to toggle enable/disable this node.
# This may depend on the node class.
# 5. Other class-specific arguments
nodes=[
# 'DetectorNode':
# This node performs object detection from the frame image using an
# MMDetection model.
dict(
type='DetectorNode',
name='Detector',
model_config='demo/mmdetection_cfg/mask_rcnn_r50_fpn_2x_coco.py',
model_checkpoint='https://download.openmmlab.com/'
'mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/'
'mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392'
'__segm_mAP-0.354_20200505_003907-3e542a40.pth',
input_buffer='_input_', # `_input_` is a runner-reserved buffer
output_buffer='det_result'),
# 'TopDownPoseEstimatorNode':
# This node performs keypoint detection from the frame image using an
# MMPose top-down model. Detection results is needed.
dict(
type='TopDownPoseEstimatorNode',
name='Human Pose Estimator',
model_config='configs/wholebody/2d_kpt_sview_rgb_img/'
'topdown_heatmap/coco-wholebody/'
'vipnas_mbv3_coco_wholebody_256x192_dark.py',
model_checkpoint='https://openmmlab-share.oss-cn-hangz'
'hou.aliyuncs.com/mmpose/top_down/vipnas/vipnas_mbv3_co'
'co_wholebody_256x192_dark-e2158108_20211205.pth',
cls_names=['person'],
input_buffer='det_result',
output_buffer='human_pose'),
# 'ModelResultBindingNode':
# This node binds the latest model inference result with the current
# frame. (This means the frame image and inference result may be
# asynchronous).
dict(
type='ModelResultBindingNode',
name='ResultBinder',
frame_buffer='_frame_', # `_frame_` is a runner-reserved buffer
result_buffer='human_pose',
output_buffer='frame'),
# 'MattingNode':
# This node draw the matting visualization result in the frame image.
# mask results is needed.
dict(
type='BackgroundNode',
name='Visualizer',
enable_key='b',
enable=True,
frame_buffer='frame',
output_buffer='vis_bg',
cls_names=['person']),
# 'NoticeBoardNode':
# This node show a notice board with given content, e.g. help
# information.
dict(
type='NoticeBoardNode',
name='Helper',
enable_key='h',
frame_buffer='vis_bg',
output_buffer='vis',
content_lines=[
'This is a demo for background changing effects. Have fun!',
'', 'Hot-keys:', '"b": Change background',
'"h": Show help information',
'"m": Show diagnostic information', '"q": Exit'
],
),
# 'MonitorNode':
# This node show diagnostic information in the frame image. It can
# be used for debugging or monitoring system resource status.
dict(
type='MonitorNode',
name='Monitor',
enable_key='m',
enable=False,
frame_buffer='vis',
output_buffer='_display_') # `_frame_` is a runner-reserved buffer
])