|
a |
|
b/ViTPose/tools/train.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
import argparse |
|
|
3 |
import copy |
|
|
4 |
import os |
|
|
5 |
import os.path as osp |
|
|
6 |
import time |
|
|
7 |
import warnings |
|
|
8 |
|
|
|
9 |
import mmcv |
|
|
10 |
import torch |
|
|
11 |
from mmcv import Config, DictAction |
|
|
12 |
from mmcv.runner import get_dist_info, init_dist, set_random_seed |
|
|
13 |
from mmcv.utils import get_git_hash |
|
|
14 |
|
|
|
15 |
from mmpose import __version__ |
|
|
16 |
from mmpose.apis import init_random_seed, train_model |
|
|
17 |
from mmpose.datasets import build_dataset |
|
|
18 |
from mmpose.models import build_posenet |
|
|
19 |
from mmpose.utils import collect_env, get_root_logger, setup_multi_processes |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def parse_args(): |
|
|
23 |
parser = argparse.ArgumentParser(description='Train a pose model') |
|
|
24 |
parser.add_argument('config', help='train config file path') |
|
|
25 |
parser.add_argument('--work-dir', help='the dir to save logs and models') |
|
|
26 |
parser.add_argument( |
|
|
27 |
'--resume-from', help='the checkpoint file to resume from') |
|
|
28 |
parser.add_argument( |
|
|
29 |
'--no-validate', |
|
|
30 |
action='store_true', |
|
|
31 |
help='whether not to evaluate the checkpoint during training') |
|
|
32 |
group_gpus = parser.add_mutually_exclusive_group() |
|
|
33 |
group_gpus.add_argument( |
|
|
34 |
'--gpus', |
|
|
35 |
type=int, |
|
|
36 |
help='(Deprecated, please use --gpu-id) number of gpus to use ' |
|
|
37 |
'(only applicable to non-distributed training)') |
|
|
38 |
group_gpus.add_argument( |
|
|
39 |
'--gpu-ids', |
|
|
40 |
type=int, |
|
|
41 |
nargs='+', |
|
|
42 |
help='(Deprecated, please use --gpu-id) ids of gpus to use ' |
|
|
43 |
'(only applicable to non-distributed training)') |
|
|
44 |
group_gpus.add_argument( |
|
|
45 |
'--gpu-id', |
|
|
46 |
type=int, |
|
|
47 |
default=0, |
|
|
48 |
help='id of gpu to use ' |
|
|
49 |
'(only applicable to non-distributed training)') |
|
|
50 |
parser.add_argument('--seed', type=int, default=None, help='random seed') |
|
|
51 |
parser.add_argument( |
|
|
52 |
'--deterministic', |
|
|
53 |
action='store_true', |
|
|
54 |
help='whether to set deterministic options for CUDNN backend.') |
|
|
55 |
parser.add_argument( |
|
|
56 |
'--cfg-options', |
|
|
57 |
nargs='+', |
|
|
58 |
action=DictAction, |
|
|
59 |
default={}, |
|
|
60 |
help='override some settings in the used config, the key-value pair ' |
|
|
61 |
'in xxx=yyy format will be merged into config file. For example, ' |
|
|
62 |
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") |
|
|
63 |
parser.add_argument( |
|
|
64 |
'--launcher', |
|
|
65 |
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
|
66 |
default='none', |
|
|
67 |
help='job launcher') |
|
|
68 |
parser.add_argument('--local_rank', type=int, default=0) |
|
|
69 |
parser.add_argument( |
|
|
70 |
'--autoscale-lr', |
|
|
71 |
action='store_true', |
|
|
72 |
help='automatically scale lr with the number of gpus') |
|
|
73 |
args = parser.parse_args() |
|
|
74 |
if 'LOCAL_RANK' not in os.environ: |
|
|
75 |
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
76 |
|
|
|
77 |
return args |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def main(): |
|
|
81 |
args = parse_args() |
|
|
82 |
|
|
|
83 |
cfg = Config.fromfile(args.config) |
|
|
84 |
|
|
|
85 |
if args.cfg_options is not None: |
|
|
86 |
cfg.merge_from_dict(args.cfg_options) |
|
|
87 |
|
|
|
88 |
# set multi-process settings |
|
|
89 |
setup_multi_processes(cfg) |
|
|
90 |
|
|
|
91 |
# set cudnn_benchmark |
|
|
92 |
if cfg.get('cudnn_benchmark', False): |
|
|
93 |
torch.backends.cudnn.benchmark = True |
|
|
94 |
|
|
|
95 |
# work_dir is determined in this priority: CLI > segment in file > filename |
|
|
96 |
if args.work_dir is not None: |
|
|
97 |
# update configs according to CLI args if args.work_dir is not None |
|
|
98 |
cfg.work_dir = args.work_dir |
|
|
99 |
elif cfg.get('work_dir', None) is None: |
|
|
100 |
# use config filename as default work_dir if cfg.work_dir is None |
|
|
101 |
cfg.work_dir = osp.join('./work_dirs', |
|
|
102 |
osp.splitext(osp.basename(args.config))[0]) |
|
|
103 |
if args.resume_from is not None: |
|
|
104 |
cfg.resume_from = args.resume_from |
|
|
105 |
if args.gpus is not None: |
|
|
106 |
cfg.gpu_ids = range(1) |
|
|
107 |
warnings.warn('`--gpus` is deprecated because we only support ' |
|
|
108 |
'single GPU mode in non-distributed training. ' |
|
|
109 |
'Use `gpus=1` now.') |
|
|
110 |
if args.gpu_ids is not None: |
|
|
111 |
cfg.gpu_ids = args.gpu_ids[0:1] |
|
|
112 |
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' |
|
|
113 |
'Because we only support single GPU mode in ' |
|
|
114 |
'non-distributed training. Use the first GPU ' |
|
|
115 |
'in `gpu_ids` now.') |
|
|
116 |
if args.gpus is None and args.gpu_ids is None: |
|
|
117 |
cfg.gpu_ids = [args.gpu_id] |
|
|
118 |
|
|
|
119 |
if args.autoscale_lr: |
|
|
120 |
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677) |
|
|
121 |
cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 |
|
|
122 |
|
|
|
123 |
# init distributed env first, since logger depends on the dist info. |
|
|
124 |
if args.launcher == 'none': |
|
|
125 |
distributed = False |
|
|
126 |
if len(cfg.gpu_ids) > 1: |
|
|
127 |
warnings.warn( |
|
|
128 |
f'We treat {cfg.gpu_ids} as gpu-ids, and reset to ' |
|
|
129 |
f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in ' |
|
|
130 |
'non-distribute training time.') |
|
|
131 |
cfg.gpu_ids = cfg.gpu_ids[0:1] |
|
|
132 |
else: |
|
|
133 |
distributed = True |
|
|
134 |
init_dist(args.launcher, **cfg.dist_params) |
|
|
135 |
# re-set gpu_ids with distributed training mode |
|
|
136 |
_, world_size = get_dist_info() |
|
|
137 |
cfg.gpu_ids = range(world_size) |
|
|
138 |
|
|
|
139 |
# create work_dir |
|
|
140 |
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) |
|
|
141 |
# init the logger before other steps |
|
|
142 |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
|
143 |
log_file = osp.join(cfg.work_dir, f'{timestamp}.log') |
|
|
144 |
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) |
|
|
145 |
|
|
|
146 |
# init the meta dict to record some important information such as |
|
|
147 |
# environment info and seed, which will be logged |
|
|
148 |
meta = dict() |
|
|
149 |
# log env info |
|
|
150 |
env_info_dict = collect_env() |
|
|
151 |
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) |
|
|
152 |
dash_line = '-' * 60 + '\n' |
|
|
153 |
logger.info('Environment info:\n' + dash_line + env_info + '\n' + |
|
|
154 |
dash_line) |
|
|
155 |
meta['env_info'] = env_info |
|
|
156 |
|
|
|
157 |
# log some basic info |
|
|
158 |
logger.info(f'Distributed training: {distributed}') |
|
|
159 |
logger.info(f'Config:\n{cfg.pretty_text}') |
|
|
160 |
|
|
|
161 |
# set random seeds |
|
|
162 |
seed = init_random_seed(args.seed) |
|
|
163 |
logger.info(f'Set random seed to {seed}, ' |
|
|
164 |
f'deterministic: {args.deterministic}') |
|
|
165 |
set_random_seed(seed, deterministic=args.deterministic) |
|
|
166 |
cfg.seed = seed |
|
|
167 |
meta['seed'] = seed |
|
|
168 |
|
|
|
169 |
model = build_posenet(cfg.model) |
|
|
170 |
datasets = [build_dataset(cfg.data.train)] |
|
|
171 |
|
|
|
172 |
if len(cfg.workflow) == 2: |
|
|
173 |
val_dataset = copy.deepcopy(cfg.data.val) |
|
|
174 |
val_dataset.pipeline = cfg.data.train.pipeline |
|
|
175 |
datasets.append(build_dataset(val_dataset)) |
|
|
176 |
|
|
|
177 |
if cfg.checkpoint_config is not None: |
|
|
178 |
# save mmpose version, config file content |
|
|
179 |
# checkpoints as meta data |
|
|
180 |
cfg.checkpoint_config.meta = dict( |
|
|
181 |
mmpose_version=__version__ + get_git_hash(digits=7), |
|
|
182 |
config=cfg.pretty_text, |
|
|
183 |
) |
|
|
184 |
train_model( |
|
|
185 |
model, |
|
|
186 |
datasets, |
|
|
187 |
cfg, |
|
|
188 |
distributed=distributed, |
|
|
189 |
validate=(not args.no_validate), |
|
|
190 |
timestamp=timestamp, |
|
|
191 |
meta=meta) |
|
|
192 |
|
|
|
193 |
|
|
|
194 |
if __name__ == '__main__': |
|
|
195 |
main() |