a b/ViTPose/tools/analysis/get_flops.py
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import argparse
3
from functools import partial
4
5
import torch
6
7
from mmpose.apis.inference import init_pose_model
8
9
try:
10
    from mmcv.cnn import get_model_complexity_info
11
except ImportError:
12
    raise ImportError('Please upgrade mmcv to >0.6.2')
13
14
15
def parse_args():
16
    parser = argparse.ArgumentParser(description='Train a recognizer')
17
    parser.add_argument('config', help='train config file path')
18
    parser.add_argument(
19
        '--shape',
20
        type=int,
21
        nargs='+',
22
        default=[256, 192],
23
        help='input image size')
24
    parser.add_argument(
25
        '--input-constructor',
26
        '-c',
27
        type=str,
28
        choices=['none', 'batch'],
29
        default='none',
30
        help='If specified, it takes a callable method that generates '
31
        'input. Otherwise, it will generate a random tensor with '
32
        'input shape to calculate FLOPs.')
33
    parser.add_argument(
34
        '--batch-size', '-b', type=int, default=1, help='input batch size')
35
    parser.add_argument(
36
        '--not-print-per-layer-stat',
37
        '-n',
38
        action='store_true',
39
        help='Whether to print complexity information'
40
        'for each layer in a model')
41
    args = parser.parse_args()
42
    return args
43
44
45
def batch_constructor(flops_model, batch_size, input_shape):
46
    """Generate a batch of tensors to the model."""
47
    batch = {}
48
49
    img = torch.ones(()).new_empty(
50
        (batch_size, *input_shape),
51
        dtype=next(flops_model.parameters()).dtype,
52
        device=next(flops_model.parameters()).device)
53
54
    batch['img'] = img
55
    return batch
56
57
58
def main():
59
60
    args = parse_args()
61
62
    if len(args.shape) == 1:
63
        input_shape = (3, args.shape[0], args.shape[0])
64
    elif len(args.shape) == 2:
65
        input_shape = (3, ) + tuple(args.shape)
66
    else:
67
        raise ValueError('invalid input shape')
68
69
    model = init_pose_model(args.config)
70
71
    if args.input_constructor == 'batch':
72
        input_constructor = partial(batch_constructor, model, args.batch_size)
73
    else:
74
        input_constructor = None
75
76
    if args.input_constructor == 'batch':
77
        input_constructor = partial(batch_constructor, model, args.batch_size)
78
    else:
79
        input_constructor = None
80
81
    if hasattr(model, 'forward_dummy'):
82
        model.forward = model.forward_dummy
83
    else:
84
        raise NotImplementedError(
85
            'FLOPs counter is currently not currently supported with {}'.
86
            format(model.__class__.__name__))
87
88
    flops, params = get_model_complexity_info(
89
        model,
90
        input_shape,
91
        input_constructor=input_constructor,
92
        print_per_layer_stat=(not args.not_print_per_layer_stat))
93
    split_line = '=' * 30
94
    input_shape = (args.batch_size, ) + input_shape
95
    print(f'{split_line}\nInput shape: {input_shape}\n'
96
          f'Flops: {flops}\nParams: {params}\n{split_line}')
97
    print('!!!Please be cautious if you use the results in papers. '
98
          'You may need to check if all ops are supported and verify that the '
99
          'flops computation is correct.')
100
101
102
if __name__ == '__main__':
103
    main()