|
a |
|
b/ViTPose/tests/test_config.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
from os.path import dirname, exists, join, relpath |
|
|
3 |
|
|
|
4 |
import torch |
|
|
5 |
from mmcv.runner import build_optimizer |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
def _get_config_directory(): |
|
|
9 |
"""Find the predefined detector config directory.""" |
|
|
10 |
try: |
|
|
11 |
# Assume we are running in the source mmdetection repo |
|
|
12 |
repo_dpath = dirname(dirname(__file__)) |
|
|
13 |
except NameError: |
|
|
14 |
# For IPython development when this __file__ is not defined |
|
|
15 |
import mmpose |
|
|
16 |
repo_dpath = dirname(dirname(mmpose.__file__)) |
|
|
17 |
config_dpath = join(repo_dpath, 'configs') |
|
|
18 |
if not exists(config_dpath): |
|
|
19 |
raise Exception('Cannot find config path') |
|
|
20 |
return config_dpath |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def test_config_build_detector(): |
|
|
24 |
"""Test that all detection models defined in the configs can be |
|
|
25 |
initialized.""" |
|
|
26 |
from mmcv import Config |
|
|
27 |
|
|
|
28 |
from mmpose.models import build_posenet |
|
|
29 |
|
|
|
30 |
config_dpath = _get_config_directory() |
|
|
31 |
print(f'Found config_dpath = {config_dpath}') |
|
|
32 |
|
|
|
33 |
import glob |
|
|
34 |
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py'))) |
|
|
35 |
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1] |
|
|
36 |
config_names = [relpath(p, config_dpath) for p in config_fpaths] |
|
|
37 |
|
|
|
38 |
print(f'Using {len(config_names)} config files') |
|
|
39 |
|
|
|
40 |
for config_fname in config_names: |
|
|
41 |
config_fpath = join(config_dpath, config_fname) |
|
|
42 |
config_mod = Config.fromfile(config_fpath) |
|
|
43 |
|
|
|
44 |
print(f'Building detector, config_fpath = {config_fpath}') |
|
|
45 |
|
|
|
46 |
# Remove pretrained keys to allow for testing in an offline environment |
|
|
47 |
if 'pretrained' in config_mod.model: |
|
|
48 |
config_mod.model['pretrained'] = None |
|
|
49 |
|
|
|
50 |
detector = build_posenet(config_mod.model) |
|
|
51 |
assert detector is not None |
|
|
52 |
|
|
|
53 |
optimizer = build_optimizer(detector, config_mod.optimizer) |
|
|
54 |
assert isinstance(optimizer, torch.optim.Optimizer) |