[c1b1c5]: / ViTPose / tests / test_backbones / test_mobilenet_v2.py

Download this file

258 lines (214 with data), 8.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones import MobileNetV2
from mmpose.models.backbones.mobilenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv2_invertedresidual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(16, 24, stride=3, expand_ratio=6)
# Test InvertedResidual with checkpoint forward, stride=1
block = InvertedResidual(16, 24, stride=1, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
# Test InvertedResidual with expand_ratio=1
block = InvertedResidual(16, 16, stride=1, expand_ratio=1)
assert len(block.conv) == 2
# Test InvertedResidual with use_res_connect
block = InvertedResidual(16, 16, stride=1, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert block.use_res_connect is True
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual with checkpoint forward, stride=2
block = InvertedResidual(16, 24, stride=2, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 28, 28))
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(16, 24, stride=1, expand_ratio=6, with_cp=True)
assert block.with_cp
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
# Test InvertedResidual with act_cfg=dict(type='ReLU')
block = InvertedResidual(
16, 24, stride=1, expand_ratio=6, act_cfg=dict(type='ReLU'))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
def test_mobilenetv2_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV2()
model.init_weights(pretrained=0)
with pytest.raises(ValueError):
# frozen_stages must in range(1, 8)
MobileNetV2(frozen_stages=8)
with pytest.raises(ValueError):
# tout_indices in range(-1, 8)
MobileNetV2(out_indices=[8])
# Test MobileNetV2 with first stage frozen
frozen_stages = 1
model = MobileNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.conv1.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with norm_eval=True
model = MobileNetV2(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV2 forward with widen_factor=1.0
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 8))
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
assert feat[7].shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with widen_factor=0.5
model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 8, 112, 112))
assert feat[1].shape == torch.Size((1, 16, 56, 56))
assert feat[2].shape == torch.Size((1, 16, 28, 28))
assert feat[3].shape == torch.Size((1, 32, 14, 14))
assert feat[4].shape == torch.Size((1, 48, 14, 14))
assert feat[5].shape == torch.Size((1, 80, 7, 7))
assert feat[6].shape == torch.Size((1, 160, 7, 7))
# Test MobileNetV2 forward with widen_factor=2.0
model = MobileNetV2(widen_factor=2.0)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 2560, 7, 7))
# Test MobileNetV2 forward with out_indices=None
model = MobileNetV2(widen_factor=1.0)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with dict(type='ReLU')
model = MobileNetV2(
widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 7))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with GroupNorm forward
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with BatchNorm forward
model = MobileNetV2(
widen_factor=1.0,
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with layers 1, 3, 5 out forward
model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 32, 28, 28))
assert feat[2].shape == torch.Size((1, 96, 14, 14))
# Test MobileNetV2 with checkpoint forward
model = MobileNetV2(
widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))