[c1b1c5]: / ViTPose / tests / test_backbones / test_backbones_utils.py

Download this file

118 lines (95 with data), 3.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones.utils import (InvertedResidual, SELayer,
channel_shuffle, make_divisible)
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def test_make_divisible():
# test min_value is None
result = make_divisible(34, 8, None)
assert result == 32
# test when new_value > min_ratio * value
result = make_divisible(10, 8, min_ratio=0.9)
assert result == 16
# test min_value = 0.8
result = make_divisible(33, 8, min_ratio=0.8)
assert result == 32
def test_channel_shuffle():
x = torch.randn(1, 24, 56, 56)
with pytest.raises(AssertionError):
# num_channels should be divisible by groups
channel_shuffle(x, 7)
groups = 3
batch_size, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
out = channel_shuffle(x, groups)
# test the output value when groups = 3
for b in range(batch_size):
for c in range(num_channels):
c_out = c % channels_per_group * groups + c // channels_per_group
for i in range(height):
for j in range(width):
assert x[b, c, i, j] == out[b, c_out, i, j]
def test_inverted_residual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(16, 16, 32, stride=3)
with pytest.raises(AssertionError):
# se_cfg must be None or dict
InvertedResidual(16, 16, 32, se_cfg=list())
with pytest.raises(AssertionError):
# in_channeld and out_channels must be the same if
# with_expand_conv is False
InvertedResidual(16, 16, 32, with_expand_conv=False)
# Test InvertedResidual forward, stride=1
block = InvertedResidual(16, 16, 32, stride=1)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert getattr(block, 'se', None) is None
assert block.with_res_shortcut
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward, stride=2
block = InvertedResidual(16, 16, 32, stride=2)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert not block.with_res_shortcut
assert x_out.shape == torch.Size((1, 16, 28, 28))
# Test InvertedResidual forward with se layer
se_cfg = dict(channels=32)
block = InvertedResidual(16, 16, 32, stride=1, se_cfg=se_cfg)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert isinstance(block.se, SELayer)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward, with_expand_conv=False
block = InvertedResidual(32, 16, 32, with_expand_conv=False)
x = torch.randn(1, 32, 56, 56)
x_out = block(x)
assert getattr(block, 'expand_conv', None) is None
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with GroupNorm
block = InvertedResidual(
16, 16, 32, norm_cfg=dict(type='GN', num_groups=2))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
for m in block.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with HSigmoid
block = InvertedResidual(16, 16, 32, act_cfg=dict(type='HSigmoid'))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with checkpoint
block = InvertedResidual(16, 16, 32, with_cp=True)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert block.with_cp
assert x_out.shape == torch.Size((1, 16, 56, 56))