[c1b1c5]: / ViTPose / tests / test_apis / test_inference.py

Download this file

199 lines (175 with data), 6.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import numpy as np
from mmpose.apis import (inference_bottom_up_pose_model,
inference_top_down_pose_model, init_pose_model,
process_mmdet_results, vis_pose_result)
from mmpose.datasets import DatasetInfo
def test_top_down_demo():
# COCO demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'coco/res50_coco_256x192.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
person_result = []
person_result.append({'bbox': [50, 50, 50, 100]})
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# AIC demo
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'aic/res50_aic_256x192.py',
None,
device='cpu')
image_name = 'tests/data/aic/054d9ce9201beffc76e5ff2169d2af2f027002ca.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# OneHand10K demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'onehand10k/res50_onehand10k_256x256.py',
None,
device='cpu')
image_name = 'tests/data/onehand10k/9.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# InterHand2DDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'interhand2d/res50_interhand2d_all_256x256.py',
None,
device='cpu')
image_name = 'tests/data/interhand2.6m/image2017.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# Face300WDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'300w/res50_300w_256x256.py',
None,
device='cpu')
image_name = 'tests/data/300w/indoor_020.png'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# FaceAFLWDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'aflw/res50_aflw_256x256.py',
None,
device='cpu')
image_name = 'tests/data/aflw/image04476.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# FaceCOFWDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'cofw/res50_cofw_256x256.py',
None,
device='cpu')
image_name = 'tests/data/cofw/001766.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
def test_bottom_up_demo():
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/associative_embedding/'
'coco/res50_coco_512x512.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
pose_results, _ = inference_bottom_up_pose_model(
pose_model, image_name, dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# test dataset_info without sigmas
pose_model_copy = copy.deepcopy(pose_model)
pose_model_copy.cfg.data.test.dataset_info.pop('sigmas')
pose_results, _ = inference_bottom_up_pose_model(
pose_model_copy, image_name, dataset_info=dataset_info)
def test_process_mmdet_results():
det_results = [np.array([0, 0, 100, 100])]
det_mask_results = None
_ = process_mmdet_results(
mmdet_results=(det_results, det_mask_results), cat_id=1)
_ = process_mmdet_results(mmdet_results=det_results, cat_id=1)