--- a +++ b/ViTPose/mmpose/datasets/builder.py @@ -0,0 +1,162 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import copy +import platform +import random +from functools import partial + +import numpy as np +from mmcv.parallel import collate +from mmcv.runner import get_dist_info +from mmcv.utils import Registry, build_from_cfg, is_seq_of +from mmcv.utils.parrots_wrapper import _get_dataloader +from torch.utils.data.dataset import ConcatDataset + +from .samplers import DistributedSampler + +if platform.system() != 'Windows': + # https://github.com/pytorch/pytorch/issues/973 + import resource + rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) + base_soft_limit = rlimit[0] + hard_limit = rlimit[1] + soft_limit = min(max(4096, base_soft_limit), hard_limit) + resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) + +DATASETS = Registry('dataset') +PIPELINES = Registry('pipeline') + + +def _concat_dataset(cfg, default_args=None): + types = cfg['type'] + ann_files = cfg['ann_file'] + img_prefixes = cfg.get('img_prefix', None) + dataset_infos = cfg.get('dataset_info', None) + + num_joints = cfg['data_cfg'].get('num_joints', None) + dataset_channel = cfg['data_cfg'].get('dataset_channel', None) + + datasets = [] + num_dset = len(ann_files) + for i in range(num_dset): + cfg_copy = copy.deepcopy(cfg) + cfg_copy['ann_file'] = ann_files[i] + + if isinstance(types, (list, tuple)): + cfg_copy['type'] = types[i] + if isinstance(img_prefixes, (list, tuple)): + cfg_copy['img_prefix'] = img_prefixes[i] + if isinstance(dataset_infos, (list, tuple)): + cfg_copy['dataset_info'] = dataset_infos[i] + + if isinstance(num_joints, (list, tuple)): + cfg_copy['data_cfg']['num_joints'] = num_joints[i] + + if is_seq_of(dataset_channel, list): + cfg_copy['data_cfg']['dataset_channel'] = dataset_channel[i] + + datasets.append(build_dataset(cfg_copy, default_args)) + + return ConcatDataset(datasets) + + +def build_dataset(cfg, default_args=None): + """Build a dataset from config dict. + + Args: + cfg (dict): Config dict. It should at least contain the key "type". + default_args (dict, optional): Default initialization arguments. + Default: None. + + Returns: + Dataset: The constructed dataset. + """ + from .dataset_wrappers import RepeatDataset + + if isinstance(cfg, (list, tuple)): + dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) + elif cfg['type'] == 'ConcatDataset': + dataset = ConcatDataset( + [build_dataset(c, default_args) for c in cfg['datasets']]) + elif cfg['type'] == 'RepeatDataset': + dataset = RepeatDataset( + build_dataset(cfg['dataset'], default_args), cfg['times']) + elif isinstance(cfg.get('ann_file'), (list, tuple)): + dataset = _concat_dataset(cfg, default_args) + else: + dataset = build_from_cfg(cfg, DATASETS, default_args) + return dataset + + +def build_dataloader(dataset, + samples_per_gpu, + workers_per_gpu, + num_gpus=1, + dist=True, + shuffle=True, + seed=None, + drop_last=True, + pin_memory=True, + **kwargs): + """Build PyTorch DataLoader. + + In distributed training, each GPU/process has a dataloader. + In non-distributed training, there is only one dataloader for all GPUs. + + Args: + dataset (Dataset): A PyTorch dataset. + samples_per_gpu (int): Number of training samples on each GPU, i.e., + batch size of each GPU. + workers_per_gpu (int): How many subprocesses to use for data loading + for each GPU. + num_gpus (int): Number of GPUs. Only used in non-distributed training. + dist (bool): Distributed training/test or not. Default: True. + shuffle (bool): Whether to shuffle the data at every epoch. + Default: True. + drop_last (bool): Whether to drop the last incomplete batch in epoch. + Default: True + pin_memory (bool): Whether to use pin_memory in DataLoader. + Default: True + kwargs: any keyword argument to be used to initialize DataLoader + + Returns: + DataLoader: A PyTorch dataloader. + """ + rank, world_size = get_dist_info() + if dist: + sampler = DistributedSampler( + dataset, world_size, rank, shuffle=shuffle, seed=seed) + shuffle = False + batch_size = samples_per_gpu + num_workers = workers_per_gpu + else: + sampler = None + batch_size = num_gpus * samples_per_gpu + num_workers = num_gpus * workers_per_gpu + + init_fn = partial( + worker_init_fn, num_workers=num_workers, rank=rank, + seed=seed) if seed is not None else None + + _, DataLoader = _get_dataloader() + data_loader = DataLoader( + dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=num_workers, + collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), + pin_memory=pin_memory, + shuffle=shuffle, + worker_init_fn=init_fn, + drop_last=drop_last, + **kwargs) + + return data_loader + + +def worker_init_fn(worker_id, num_workers, rank, seed): + """Init the random seed for various workers.""" + # The seed of each worker equals to + # num_worker * rank + worker_id + user_seed + worker_seed = num_workers * rank + worker_id + seed + np.random.seed(worker_seed) + random.seed(worker_seed)