[c1b1c5]: / ViTPose / configs / _base_ / datasets / animalpose.py

Download this file

167 lines (165 with data), 5.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
dataset_info = dict(
dataset_name='animalpose',
paper_info=dict(
author='Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and '
'Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing',
title='Cross-Domain Adaptation for Animal Pose Estimation',
container='The IEEE International Conference on '
'Computer Vision (ICCV)',
year='2019',
homepage='https://sites.google.com/view/animal-pose/',
),
keypoint_info={
0:
dict(
name='L_Eye', id=0, color=[0, 255, 0], type='upper', swap='R_Eye'),
1:
dict(
name='R_Eye',
id=1,
color=[255, 128, 0],
type='upper',
swap='L_Eye'),
2:
dict(
name='L_EarBase',
id=2,
color=[0, 255, 0],
type='upper',
swap='R_EarBase'),
3:
dict(
name='R_EarBase',
id=3,
color=[255, 128, 0],
type='upper',
swap='L_EarBase'),
4:
dict(name='Nose', id=4, color=[51, 153, 255], type='upper', swap=''),
5:
dict(name='Throat', id=5, color=[51, 153, 255], type='upper', swap=''),
6:
dict(
name='TailBase', id=6, color=[51, 153, 255], type='lower',
swap=''),
7:
dict(
name='Withers', id=7, color=[51, 153, 255], type='upper', swap=''),
8:
dict(
name='L_F_Elbow',
id=8,
color=[0, 255, 0],
type='upper',
swap='R_F_Elbow'),
9:
dict(
name='R_F_Elbow',
id=9,
color=[255, 128, 0],
type='upper',
swap='L_F_Elbow'),
10:
dict(
name='L_B_Elbow',
id=10,
color=[0, 255, 0],
type='lower',
swap='R_B_Elbow'),
11:
dict(
name='R_B_Elbow',
id=11,
color=[255, 128, 0],
type='lower',
swap='L_B_Elbow'),
12:
dict(
name='L_F_Knee',
id=12,
color=[0, 255, 0],
type='upper',
swap='R_F_Knee'),
13:
dict(
name='R_F_Knee',
id=13,
color=[255, 128, 0],
type='upper',
swap='L_F_Knee'),
14:
dict(
name='L_B_Knee',
id=14,
color=[0, 255, 0],
type='lower',
swap='R_B_Knee'),
15:
dict(
name='R_B_Knee',
id=15,
color=[255, 128, 0],
type='lower',
swap='L_B_Knee'),
16:
dict(
name='L_F_Paw',
id=16,
color=[0, 255, 0],
type='upper',
swap='R_F_Paw'),
17:
dict(
name='R_F_Paw',
id=17,
color=[255, 128, 0],
type='upper',
swap='L_F_Paw'),
18:
dict(
name='L_B_Paw',
id=18,
color=[0, 255, 0],
type='lower',
swap='R_B_Paw'),
19:
dict(
name='R_B_Paw',
id=19,
color=[255, 128, 0],
type='lower',
swap='L_B_Paw')
},
skeleton_info={
0: dict(link=('L_Eye', 'R_Eye'), id=0, color=[51, 153, 255]),
1: dict(link=('L_Eye', 'L_EarBase'), id=1, color=[0, 255, 0]),
2: dict(link=('R_Eye', 'R_EarBase'), id=2, color=[255, 128, 0]),
3: dict(link=('L_Eye', 'Nose'), id=3, color=[0, 255, 0]),
4: dict(link=('R_Eye', 'Nose'), id=4, color=[255, 128, 0]),
5: dict(link=('Nose', 'Throat'), id=5, color=[51, 153, 255]),
6: dict(link=('Throat', 'Withers'), id=6, color=[51, 153, 255]),
7: dict(link=('TailBase', 'Withers'), id=7, color=[51, 153, 255]),
8: dict(link=('Throat', 'L_F_Elbow'), id=8, color=[0, 255, 0]),
9: dict(link=('L_F_Elbow', 'L_F_Knee'), id=9, color=[0, 255, 0]),
10: dict(link=('L_F_Knee', 'L_F_Paw'), id=10, color=[0, 255, 0]),
11: dict(link=('Throat', 'R_F_Elbow'), id=11, color=[255, 128, 0]),
12: dict(link=('R_F_Elbow', 'R_F_Knee'), id=12, color=[255, 128, 0]),
13: dict(link=('R_F_Knee', 'R_F_Paw'), id=13, color=[255, 128, 0]),
14: dict(link=('TailBase', 'L_B_Elbow'), id=14, color=[0, 255, 0]),
15: dict(link=('L_B_Elbow', 'L_B_Knee'), id=15, color=[0, 255, 0]),
16: dict(link=('L_B_Knee', 'L_B_Paw'), id=16, color=[0, 255, 0]),
17: dict(link=('TailBase', 'R_B_Elbow'), id=17, color=[255, 128, 0]),
18: dict(link=('R_B_Elbow', 'R_B_Knee'), id=18, color=[255, 128, 0]),
19: dict(link=('R_B_Knee', 'R_B_Paw'), id=19, color=[255, 128, 0])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.2, 1.2,
1.5, 1.5, 1.5, 1.5
],
# Note: The original paper did not provide enough information about
# the sigmas. We modified from 'https://github.com/cocodataset/'
# 'cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py#L523'
sigmas=[
0.025, 0.025, 0.026, 0.035, 0.035, 0.10, 0.10, 0.10, 0.107, 0.107,
0.107, 0.107, 0.087, 0.087, 0.087, 0.087, 0.089, 0.089, 0.089, 0.089
])