'''
Python 3.x library to control an UR robot through its TCP/IP interfaces
Copyright (C) 2017 Martin Huus Bjerge, Rope Robotics ApS, Denmark
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL "Rope Robotics ApS" BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of "Rope Robotics ApS" shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from "Rope Robotics ApS".
'''
__author__ = "Martin Huus Bjerge"
__copyright__ = "Copyright 2017, Rope Robotics ApS, Denmark"
__license__ = "MIT License"
import ikpy as ik
import numpy as np
import sympy as sp
import math
import scipy
from scipy import linalg
from URBasic.manipulation import *
pi = np.pi
# Disable the logging stream from ikpy
# ik.logs.manager.removeHandler(ik.logs.stream_handler)
def Forwardkin_manip(joints, rob='ur10'):
'''
This function solves forward kinematics, it returns pose vector
'''
M, Slist = Robot_parameter_screw_axes(rob)
thetalist = joints
fk = FKinFixed(M, Slist, thetalist)
return np.round(Tran_Mat2Pose(Tran_Mat=fk), 4)
def Invkine_manip(target_pos, init_joint_pos=[0, 0, 0, 0, 0, 0], rob='ur10', tcpOffset=[0, 0, 0, 0, 0, 0]):
'''
A numerical inverse kinematics routine based on Newton-Raphson method.
Takes a list of fixed screw axes (Slist) expressed in end-effector body frame, the end-effector zero
configuration (M), the desired end-effector configuration (T_sd), an initial guess of joint angles
(thetalist_init), and small positive scalar thresholds (wthresh, vthresh) controlling how close the
final solution thetas must be to the desired thetas.
'''
M, Slist = Robot_parameter_screw_axes(rob)
wthresh = 0.001
vthresh = 0.0001
# T_sd = Pose2Tran_Mat(pose=target_pos)
T_target = Pose2Tran_Mat(pose=target_pos)
T_tcp = Pose2Tran_Mat(pose=tcpOffset)
T_sd = np.matmul(T_target, np.linalg.inv(T_tcp))
thetalist_init = init_joint_pos
ik_init = np.round(IKinFixed(Slist, M, T_sd, thetalist_init, wthresh, vthresh), 3)
ik = ik_init[-1][:] # choose the closest solution
error = []
for kk in ik_init:
out = []
for ii in range(6):
k = np.round((kk[ii] - init_joint_pos[ii]) / 2 / np.pi)
out.append(kk[ii] - k * 2 * np.pi)
# change them to numpy array for np.sum operation
init_joint_pos = np.array(init_joint_pos)
out = np.array(out)
error.append(np.abs(np.sum(init_joint_pos - out)))
ix = error == np.min(error)
ix = np.where(ix == True)[0][0]
ik = ik_init[ix][:] # choose the closest solution
out = []
for ii in range(6):
k = np.round((ik[ii] - init_joint_pos[ii]) / 2 / np.pi)
out.append(ik[ii] - k * 2 * np.pi)
# error = (pi+ik-init_joint_pos)%(2*pi)-pi
# print('***************************************************************************')
# print('Pose : [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*target_pos))
# print('Init q: [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*init_joint_pos))
# print('---------------------------------------------------------------------------')
# print(ik_init)
# print('---------------------------------------------------------------------------')
# # print(error)
# # print('---------------------------------------------------------------------------')
# print('Joints Candidate: [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*ik))
# print('Joints Returned: [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*out)) #init_joint_pos+error))
# print('***************************************************************************')
return out
# return init_joint_pos+error
def rotate_tcp(gradient_vec=[0, 0, 0]):
'''
Convert gradient vector to axis angle vector
Parameters:
gradient_vec (3D float): [dx, dy, dz] displacement in x, y, z
Return value:
axis vector (3D float): [rx, ry, rz]
Exampel:
Rotate 5deg around x axis and 10 deg around y axis
dz = 0.2
dy = np.tan(10/180*np.pi)*dz
dx = np.tan(5/180*np.pi)*dz
r = rotate_tcp(gradient_vec=[dx,dy,dz])
'''
v_0 = [0, 0, 1] # this is the UR zero degree angle in the base frame
v_in_u = gradient_vec / np.linalg.norm(gradient_vec)
v1_u = v_in_u / np.linalg.norm(v_in_u)
v2_u = v_0 / np.linalg.norm(v_0)
rot_angle = np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
min_angle = 0.01
if rot_angle < min_angle:
rotation_vec = [0, 0, 0]
elif rot_angle > np.pi - min_angle:
rotation_vec = [0, -np.pi, 0]
else:
vec_norm = np.cross(v_0, v_in_u)
vec_norm = vec_norm / np.linalg.norm(vec_norm)
rotation_vec = vec_norm * rot_angle
return rotation_vec
def Robot_parameter_screw_axes(rob='ur10'):
'''
This function defines robot with fixed screw axes(used in manipulation.py)
rob='ur5' : ur5
rob='ur10' : ur10
rob='ur3e' : ur3e
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/actual-center-of-mass-for-robot-17264/
'''
if str(rob).lower() == 'ur5':
M_ur5 = [[1, 0, 0, -.81725], [0, 0, -1, -.19145], [0, 1, 0, -.0055], [0, 0, 0, 1]]
S1_ur5 = [0, 0, 1, 0, 0, 0]
S2_ur5 = [0, -1, 0, .089159, 0, 0]
S3_ur5 = [0, -1, 0, .089159, 0, .425]
S4_ur5 = [0, -1, 0, .089159, 0, .81725]
S5_ur5 = [0, 0, -1, .10915, -.81725, 0]
S6_ur5 = [0, -1, 0, -.0055, 0, .81725]
Slist_ur5 = [S1_ur5, S2_ur5, S3_ur5, S4_ur5, S5_ur5, S6_ur5]
return M_ur5, Slist_ur5
elif str(rob).lower() == 'ur10':
M_ur10 = [[1, 0, 0, -1.1843], [0, 0, -1, -0.2561], [0, 1, 0, 0.0116], [0, 0, 0, 1]]
S1_ur10 = [0, 0, 1, 0, 0, 0]
S2_ur10 = [0, -1, 0, .1273, 0, 0]
S3_ur10 = [0, -1, 0, .1273, 0, .612]
S4_ur10 = [0, -1, 0, .1273, 0, 1.1843]
S5_ur10 = [0, 0, -1, .16394, -1.1843, 0]
S6_ur10 = [0, -1, 0, 0.01165, 0, 1.1843]
Slist_ur10 = [S1_ur10, S2_ur10, S3_ur10, S4_ur10, S5_ur10, S6_ur10]
return M_ur10, Slist_ur10
elif str(rob).lower() == 'ur3e':
M_ur3e = [[1, 0, 0, -0.45675], [0, 0, -1, -0.22315], [0, 1, 0, 0.06650], [0, 0, 0, 1]]
S1_ur3e = [0, 0, 1, 0, 0, 0]
S2_ur3e = [0, -1, 0, .15185, 0, 0]
S3_ur3e = [0, -1, 0, .15185, 0, .24355]
S4_ur3e = [0, -1, 0, .15185, 0, 0.45675]
S5_ur3e = [0, 0, -1, .13105, -0.45675, 0]
S6_ur3e = [0, -1, 0, 0.06655, 0, 0.45675]
Slist_ur3e = [S1_ur3e, S2_ur3e, S3_ur3e, S4_ur3e, S5_ur3e, S6_ur3e]
return M_ur3e, Slist_ur3e
else:
print('Wrong robot selected')
return False
def Robot_DH_Numerical(rob='ur10', joint=[0, 0, 0, 0, 0, 0]):
'''
This function returns the DH parameter of a robot
rob='ur5' : ur5
rob='ur10' : ur10
joint: the robot joint vectors
'''
j = joint
if str(rob).lower() == 'ur5':
dh_ur = np.matrix([
[0, pi / 2, 0.089159, j[0]],
[-0.425, 0, 0, j[1]],
[-0.39225, 0, 0, j[2]],
[0, pi / 2, 0.10915, j[3]],
[0, -pi / 2, 0.09465, j[4]],
[0, 0, 0.0823, j[5]]])
return dh_ur
elif str(rob).lower() == 'ur10':
dh_ur = np.matrix([
[0, pi / 2, 0.1273, j[0]],
[-0.612, 0, 0, j[1]],
[-0.5723, 0, 0, j[2]],
[0, pi / 2, 0.163941, j[3]],
[0, -pi / 2, 0.1157, j[4]],
[0, 0, 0.0922, j[5]]])
return dh_ur
else:
print('Wrong robot selected')
return
def Robot_DH_Symbol(rob='ur10'):
'''
This function returns the DH parameter of a robot
rob='ur5' : ur5
rob='ur10' : ur10
'''
# set up our joint angle symbols (6th angle doesn't affect any kinematics)
q = [sp.Symbol('q%i' % ii) for ii in range(6)]
if str(rob).lower() == 'ur5':
dh_ur = np.matrix([
[0, pi / 2, 0.089159, q[0]],
[-0.425, 0, 0, q[1]],
[-0.39225, 0, 0, q[2]],
[0, pi / 2, 0.10915, q[3]],
[0, -pi / 2, 0.09465, q[4]],
[0, 0, 0.0823, q[5]]])
return dh_ur
elif str(rob).lower() == 'ur10':
dh_ur = np.matrix([
[0, pi / 2, 0.1273, q[0]],
[-0.612, 0, 0, q[1]],
[-0.5723, 0, 0, q[2]],
[0, pi / 2, 0.163941, q[3]],
[0, -pi / 2, 0.1157, q[4]],
[0, 0, 0.0922, q[5]]])
return dh_ur
else:
print('Wrong robot selected')
return
def TransMatrix_DH_Symbol(rob='ur10', joint_num=6):
'''
This function gives the transfer matrix of robot(DH method)
rob='ur5' : ur5
rob='ur10' : ur10
joint_num: the transform matrix for joint_num (from 1 to 6)
'''
T = []
# set up our joint angle symbols (6th angle doesn't affect any kinematics)
q = [sp.Symbol('q%i' % ii) for ii in range(joint_num)]
dh_ur = Robot_DH_Symbol(rob)
for ii in range(joint_num):
# descriptions terms in dh_ur
# dh_ur[:,0] = a or r
# dh_ur[:,1] = alpha
# dh_ur[:,2] = d
# dh_ur[:,3] = theta (q)
T.append(sp.Matrix([[sp.cos(dh_ur[ii, 3]), -sp.sin(dh_ur[ii, 3]) * sp.cos(dh_ur[ii, 1]),
sp.sin(dh_ur[ii, 3]) * sp.sin(dh_ur[ii, 1]), sp.cos(dh_ur[ii, 3]) * dh_ur[ii, 0]],
[sp.sin(dh_ur[ii, 3]), sp.cos(dh_ur[ii, 3]) * sp.cos(dh_ur[ii, 1]),
-sp.cos(dh_ur[ii, 3]) * sp.sin(dh_ur[ii, 1]), sp.sin(dh_ur[ii, 3]) * dh_ur[ii, 0]],
[0, sp.sin(dh_ur[ii, 1]), sp.cos(dh_ur[ii, 1]), dh_ur[ii, 2]],
[0, 0, 0, 1]
]))
if joint_num == 1:
return T[0]
elif joint_num == 2:
return T[0] * T[1]
elif joint_num == 3:
return T[0] * T[1] * T[2]
elif joint_num == 4:
return T[0] * T[1] * T[2] * T[3]
elif joint_num == 5:
return T[0] * T[1] * T[2] * T[3] * T[4]
elif joint_num == 6:
return T[0] * T[1] * T[2] * T[3] * T[4] * T[5]
else:
print('Wrong joint number input')
return
def TransMatrix_DH_Numerical(rob='ur10', joint=[0, 0, 0, 0, 0, 0]):
'''
This function gives the transfer matrix of robot(DH method)
rob='ur5' : ur5
rob='ur10' : ur10
joint: the robot joint vectors
'''
T = []
dh_ur = Robot_DH_Numerical(rob, joint)
for ii in range(6):
# descriptions terms in dh_ur
# dh_ur[:,0] = a or r
# dh_ur[:,1] = alpha
# dh_ur[:,2] = d
# dh_ur[:,3] = theta
T.append(np.matrix([[np.cos(dh_ur[ii, 3]), -np.sin(dh_ur[ii, 3]) * np.cos(dh_ur[ii, 1]),
np.sin(dh_ur[ii, 3]) * np.sin(dh_ur[ii, 1]), np.cos(dh_ur[ii, 3]) * dh_ur[ii, 0]],
[np.sin(dh_ur[ii, 3]), np.cos(dh_ur[ii, 3]) * np.cos(dh_ur[ii, 1]),
-np.cos(dh_ur[ii, 3]) * np.sin(dh_ur[ii, 1]), np.sin(dh_ur[ii, 3]) * dh_ur[ii, 0]],
[0, np.sin(dh_ur[ii, 1]), np.cos(dh_ur[ii, 1]), dh_ur[ii, 2]],
[0, 0, 0, 1]
]))
return np.round(T[0] * T[1] * T[2] * T[3] * T[4] * T[5], 4)
def Jacobian_Symbol(rob='ur10', joint_num=6):
'''
This function returns a 6*6 symbolic jacobian matrix
Tx: transfermation matrix
'''
# set up our joint angle symbols (6th angle doesn't affect any kinematics)
q = [sp.Symbol('q%i' % ii) for ii in range(joint_num)]
Tx = TransMatrix_DH_Symbol(rob, joint_num)
J = []
# calculate derivative of (x,y,z) wrt to each joint, linear velocity
for ii in range(joint_num):
J.append([])
J[ii].append(sp.simplify(Tx[0, 3].diff(q[ii]))) # dx/dq[ii]
J[ii].append(sp.simplify(Tx[1, 3].diff(q[ii]))) # dy/dq[ii]
J[ii].append(sp.simplify(Tx[2, 3].diff(q[ii]))) # dz/dq[ii]
# orientation part of the Jacobian (compensating for orientations)
J_orientation = [
[0, 0, 1], # joint 0 rotates around z axis
[1, 0, 0], # joint 1 rotates around x axis
[1, 0, 0], # joint 2 rotates around x axis
[1, 0, 0], # joint 3 rotates around x axis
[0, 0, 1], # joint 4 rotates around z axis
[1, 0, 0]] # joint 5 rotates around x axis
# add on the orientation information up to the last joint
for ii in range(joint_num):
J[ii] = J[ii] + J_orientation[ii]
return J
def Jacobian_Numerical(rob='ur10', joint=[0, 0, 0, 0, 0, 0]):
'''
This function returns the numerical result of Jacobian
joint: joint vector
J is from Jacobian_Symbol
'''
q0 = joint[0]
q1 = joint[1]
q2 = joint[2]
q3 = joint[3]
q4 = joint[4]
q5 = joint[5]
if str(rob).lower() == 'ur5':
J = np.matrix([[0.0823 * np.sin(q0) * np.sin(q4) * np.cos(q1 + q2 + q3) - 0.09465 * np.sin(q0) * np.sin(
q1 + q2 + q3) + 0.425 * np.sin(q0) * np.cos(q1) + 0.39225 * np.sin(q0) * np.cos(q1 + q2) + 0.0823 * np.cos(
q0) * np.cos(q4) + 0.10915 * np.cos(q0),
0.0823 * np.sin(q0) * np.cos(q4) + 0.10915 * np.sin(q0) - 0.0823 * np.sin(q4) * np.cos(
q0) * np.cos(q1 + q2 + q3) + 0.09465 * np.sin(q1 + q2 + q3) * np.cos(q0) - 0.425 * np.cos(
q0) * np.cos(q1) - 0.39225 * np.cos(q0) * np.cos(q1 + q2), 0, 0, 0, 1],
[0.425 * np.sin(q1) * np.cos(q0) + 0.0823 * np.sin(q4) * np.sin(q1 + q2 + q3) * np.cos(
q0) + 0.39225 * np.sin(q1 + q2) * np.cos(q0) + 0.09465 * np.cos(q0) * np.cos(q1 + q2 + q3),
0.425 * np.sin(q0) * np.sin(q1) + 0.0823 * np.sin(q0) * np.sin(q4) * np.sin(
q1 + q2 + q3) + 0.39225 * np.sin(q0) * np.sin(q1 + q2) + 0.09465 * np.sin(q0) * np.cos(
q1 + q2 + q3),
-0.0823 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.09465 * np.sin(q1 + q2 + q3) - 0.425 * np.cos(
q1) - 0.39225 * np.cos(q1 + q2), 1, 0, 0],
[0.0823 * np.sin(q4) * np.sin(q1 + q2 + q3) * np.cos(q0) + 0.39225 * np.sin(q1 + q2) * np.cos(
q0) + 0.09465 * np.cos(q0) * np.cos(q1 + q2 + q3),
0.0823 * np.sin(q0) * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.39225 * np.sin(q0) * np.sin(
q1 + q2) + 0.09465 * np.sin(q0) * np.cos(q1 + q2 + q3),
-0.0823 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.09465 * np.sin(q1 + q2 + q3) - 0.39225 * np.cos(
q1 + q2), 1, 0, 0],
[(0.0823 * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.09465 * np.cos(q1 + q2 + q3)) * np.cos(q0),
(0.0823 * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.09465 * np.cos(q1 + q2 + q3)) * np.sin(q0),
-0.0823 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.09465 * np.sin(q1 + q2 + q3), 1, 0, 0],
[-0.0823 * (1.0 * np.sin(q0)) * np.sin(q4) - 0.0823 * np.cos(q0) * np.cos(q4) * np.cos(
q1 + q2 + q3),
0.0823 * (1.0 * np.cos(q0)) * np.sin(q4) - 0.0823 * np.sin(q0) * np.cos(q4) * np.cos(
q1 + q2 + q3), - 0.0823 * np.sin(q1 + q2 + q3) * np.cos(q4), 0, 0, 1],
[0, 0, 0, 1, 0, 0]])
elif str(rob).lower() == 'ur10':
J = np.matrix([[0.0922 * np.sin(q0) * np.sin(q4) * np.cos(q1 + q2 + q3) - 0.1157 * np.sin(q0) * np.sin(
q1 + q2 + q3) + 0.612 * np.sin(q0) * np.cos(q1) + 0.5723 * np.sin(q0) * np.cos(q1 + q2) + 0.0922 * np.cos(
q0) * np.cos(q4) + 0.163941 * np.cos(q0),
0.0922 * np.sin(q0) * np.cos(q4) + 0.163941 * np.sin(q0) - 0.0922 * np.sin(q4) * np.cos(
q0) * np.cos(q1 + q2 + q3) + 0.1157 * np.sin(q1 + q2 + q3) * np.cos(q0) - 0.612 * np.cos(
q0) * np.cos(q1) - 0.5723 * np.cos(q0) * np.cos(q1 + q2), 0, 0, 0, 1],
[0.612 * np.sin(q1) * np.cos(q0) + 0.0922 * np.sin(q4) * np.sin(q1 + q2 + q3) * np.cos(
q0) + 0.5723 * np.sin(q1 + q2) * np.cos(q0) + 0.1157 * np.cos(q0) * np.cos(q1 + q2 + q3),
0.612 * np.sin(q0) * np.sin(q1) + 0.0922 * np.sin(q0) * np.sin(q4) * np.sin(
q1 + q2 + q3) + 0.5723 * np.sin(q0) * np.sin(q1 + q2) + 0.1157 * np.sin(q0) * np.cos(
q1 + q2 + q3),
-0.0922 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.1157 * np.sin(q1 + q2 + q3) - 0.612 * np.cos(
q1) - 0.5723 * np.cos(q1 + q2), 1, 0, 0],
[0.0922 * np.sin(q4) * np.sin(q1 + q2 + q3) * np.cos(q0) + 0.5723 * np.sin(q1 + q2) * np.cos(
q0) + 0.1157 * np.cos(q0) * np.cos(q1 + q2 + q3),
0.0922 * np.sin(q0) * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.5723 * np.sin(q0) * np.sin(
q1 + q2) + 0.1157 * np.sin(q0) * np.cos(q1 + q2 + q3),
-0.0922 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.1157 * np.sin(q1 + q2 + q3) - 0.5723 * np.cos(
q1 + q2), 1, 0, 0],
[(0.0922 * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.1157 * np.cos(q1 + q2 + q3)) * np.cos(q0),
(0.0922 * np.sin(q4) * np.sin(q1 + q2 + q3) + 0.1157 * np.cos(q1 + q2 + q3)) * np.sin(q0),
-0.0922 * np.sin(q4) * np.cos(q1 + q2 + q3) + 0.1157 * np.sin(q1 + q2 + q3), 1, 0, 0],
[-0.0922 * (1.0 * np.sin(q0)) * np.sin(q4) - 0.0922 * np.cos(q0) * np.cos(q4) * np.cos(
q1 + q2 + q3),
0.0922 * (1.0 * np.cos(q0)) * np.sin(q4) - 0.0922 * np.sin(q0) * np.cos(q4) * np.cos(
q1 + q2 + q3), - 0.0922 * np.sin(q1 + q2 + q3) * np.cos(q4), 0, 0, 1],
[0, 0, 0, 1, 0, 0]])
return J
def RotatMatr2AxisAng(Matrix):
'''
Convert the rotation matrix to axis angle
'''
R = Matrix
theta = np.arccos(0.5 * (R[0, 0] + R[1, 1] + R[2, 2] - 1))
e1 = (R[2, 1] - R[1, 2]) / (2 * np.sin(theta))
e2 = (R[0, 2] - R[2, 0]) / (2 * np.sin(theta))
e3 = (R[1, 0] - R[0, 1]) / (2 * np.sin(theta))
axis_ang = np.array([theta * e1, theta * e2, theta * e3])
return axis_ang
def AxisAng2RotaMatri(angle_vec):
'''
Convert an Axis angle to rotation matrix
AxisAng2Matrix(angle_vec)
angle_vec need to be a 3D Axis angle
'''
theta = math.sqrt(angle_vec[0] ** 2 + angle_vec[1] ** 2 + angle_vec[2] ** 2)
if theta == 0.:
return np.identity(3, dtype=float)
cs = np.cos(theta)
si = np.sin(theta)
e1 = angle_vec[0] / theta
e2 = angle_vec[1] / theta
e3 = angle_vec[2] / theta
R = np.zeros((3, 3))
R[0, 0] = (1 - cs) * e1 ** 2 + cs
R[0, 1] = (1 - cs) * e1 * e2 - e3 * si
R[0, 2] = (1 - cs) * e1 * e3 + e2 * si
R[1, 0] = (1 - cs) * e1 * e2 + e3 * si
R[1, 1] = (1 - cs) * e2 ** 2 + cs
R[1, 2] = (1 - cs) * e2 * e3 - e1 * si
R[2, 0] = (1 - cs) * e1 * e3 - e2 * si
R[2, 1] = (1 - cs) * e2 * e3 + e1 * si
R[2, 2] = (1 - cs) * e3 ** 2 + cs
return R
def Rotat2TransMarix(Rota_Matrix, pose):
'''
convert the rotation matrix and pose to transformation matrix
'''
tran_mat = np.zeros((4, 4))
tran_mat[:3, :3] = Rota_Matrix[:3, :3]
tran_mat[3, 3] = 1
tran_mat[:3, 3] = pose[:3]
return tran_mat
def Pose2Tran_Mat(pose):
'''
Convert an pose to a transformation matrix
AxisAng2Matrix(pose)
'''
rot_mat = AxisAng2RotaMatri(pose[-3:])
tran_mat = Rotat2TransMarix(rot_mat, pose)
return tran_mat
def Tran_Mat2Pose(Tran_Mat):
'''
Convert a transformation matrix to pose
'''
pose = np.zeros([6])
pose[:3] = Tran_Mat[:3, 3]
Rota_mat = np.zeros([3, 3])
Rota_mat[:3, :3] = Tran_Mat[:3, :3]
angle_vec = RotatMatr2AxisAng(Rota_mat)
pose[-3:] = angle_vec
return pose
def cmpleate_rotation_matrix(start_vector):
''' This function make rotation matrix where the first column is the
input vector.
'''
a = np.matrix(start_vector)
a = a / np.linalg.norm(a)
U, s, Vh = linalg.svd(a, full_matrices=True)
Vh[0] = a # to ensure that the virst vector is not -a
Vh[2] = np.cross(a, Vh[1])
Vh = np.transpose(Vh)
return np.array(Vh)
def Inverse_kin(target_pos, init_joint_pos=[0, 0, 0, 0, 0, 0], tcpOffset=[0, 0, 0, 0, 0, 0]):
'''
Find the inverse kinematics
target_pos = the target pos vector
init_joint_pos (optional) = the initial joint vector
'''
# Define a robot from URDF file
my_chain = ik.chain.Chain.from_urdf_file('URDF/UR5.URDF')
# Convert pos to transfer matrix
# Mar = Pose2Tran_Mat(target_pos)
T_target = Pose2Tran_Mat(pose=target_pos)
T_tcp = Pose2Tran_Mat(pose=tcpOffset)
Mar = np.matmul(T_target, np.linalg.inv(T_tcp))
# Inverse kinematics
if len(init_joint_pos) < 6:
return None
else:
joint_init = init_joint_pos.copy()
# add a [0] at the base frame
joint_initadd = np.zeros([7])
joint_initadd[1:] = joint_init[:]
ikin = my_chain.inverse_kinematics(target=Mar, initial_position=joint_initadd.copy())
print('***************************************************************************')
print('Pose: [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*target_pos))
print('---------------------------------------------------------------------------')
print(ikin)
print('---------------------------------------------------------------------------')
print('Joints Returned: [{: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}, {: 06.3f}]'.format(*ikin[1:]))
print('***************************************************************************')
return ikin[1:]
def Forward_kin(joint):
'''
Find the forward kinematics
'''
# Define a robot from URDF file
my_chain = ik.chain.Chain.from_urdf_file('URDF/UR5.URDF')
# add a [0] in joint anlges, due to the defination of URDF
joint_new = np.zeros([7])
joint_new[1:] = joint[:]
fk = my_chain.forward_kinematics(joint_new)
# convert transfer matrix to pos
axis_ang = Tran_Mat2Pose(fk)
return axis_ang
def Vektor_from_Base_to_TCP(vectorBase, axisangle):
"""
Function to calculate the rotation of a vector with an axis angle. This function can be used to transform a vector from the base coordinate system to the tcp coordinate system.
(To go from tcp to Base use -1*le as input)
Parameters:
vectorBase (np.array, 3*1): the vector to be rotated
axisangle (np.array, 3*1): the axis angle between the base and the tcp
"""
# calculating the rotation angle by finding the length of the axis angle
angle = axisangle[0] * axisangle[0] + axisangle[1] * axisangle[1] + axisangle[2] * axisangle[2]
angle = np.sqrt(angle)
# Defining the unit rotation angle
eRot = axisangle / angle
# calculation of the tcp vector using Rodrigues' rotation formula
vectorBase = np.array(vectorBase)
vectorTCP = np.cos(angle) * vectorBase + np.sin(angle) * np.cross(eRot, vectorBase) + (1 - np.cos(angle)) * np.dot(
eRot, vectorBase) * eRot
return vectorTCP