# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from mmpose.datasets import DATASETS
def test_mesh_Mosh_dataset():
# test Mosh dataset
dataset = 'MoshDataset'
dataset_class = DATASETS.get(dataset)
custom_dataset = dataset_class(
ann_file='tests/data/mosh/test_mosh.npz', pipeline=[])
_ = custom_dataset[0]
def test_mesh_H36M_dataset():
# test H36M dataset
dataset = 'MeshH36MDataset'
dataset_class = DATASETS.get(dataset)
data_cfg = dict(
image_size=[256, 256],
iuv_size=[64, 64],
num_joints=24,
use_IUV=True,
uv_type='BF')
_ = dataset_class(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[],
test_mode=False)
custom_dataset = dataset_class(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[],
test_mode=True)
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
# test evaluation
outputs = []
for item in custom_dataset:
pred = dict(
keypoints_3d=item['joints_3d'][None, ...],
image_path=item['image_file'])
outputs.append(pred)
with tempfile.TemporaryDirectory() as tmpdir:
eval_result = custom_dataset.evaluate(outputs, tmpdir)
assert 'MPJPE' in eval_result
assert 'MPJPE-PA' in eval_result
def test_mesh_Mix_dataset():
# test mesh Mix dataset
dataset = 'MeshMixDataset'
dataset_class = DATASETS.get(dataset)
data_cfg = dict(
image_size=[256, 256],
iuv_size=[64, 64],
num_joints=24,
use_IUV=True,
uv_type='BF')
custom_dataset = dataset_class(
configs=[
dict(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[]),
dict(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[]),
],
partition=[0.6, 0.4])
_ = custom_dataset[0]
def test_mesh_Adversarial_dataset():
# test mesh Adversarial dataset
# load train dataset
data_cfg = dict(
image_size=[256, 256],
iuv_size=[64, 64],
num_joints=24,
use_IUV=True,
uv_type='BF')
train_dataset = dict(
type='MeshMixDataset',
configs=[
dict(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[]),
dict(
ann_file='tests/data/h36m/test_h36m.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
pipeline=[]),
],
partition=[0.6, 0.4])
# load adversarial dataset
adversarial_dataset = dict(
type='MoshDataset',
ann_file='tests/data/mosh/test_mosh.npz',
pipeline=[])
# combine train and adversarial dataset to form a new dataset
dataset = 'MeshAdversarialDataset'
dataset_class = DATASETS.get(dataset)
custom_dataset = dataset_class(train_dataset, adversarial_dataset)
item = custom_dataset[0]
assert 'mosh_theta' in item.keys()