[36ab12]: / ViTPose / tests / test_datasets / test_body3d_dataset.py

Download this file

348 lines (303 with data), 11.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
import numpy as np
from mmcv import Config
from mmpose.datasets import DATASETS
from mmpose.datasets.builder import build_dataset
def test_body3d_h36m_dataset():
# Test Human3.6M dataset
dataset = 'Body3DH36MDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/h36m.py').dataset_info
# test single-frame input
data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
_ = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=False)
custom_dataset = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=True)
assert custom_dataset.dataset_name == 'h36m'
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', 'n-mpjpe']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['N-MPJPE'], 0.0)
# test multi-frame input with joint_2d_src = 'detection'
data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causal=True,
temporal_padding=True,
joint_2d_src='detection',
joint_2d_det_file='tests/data/h36m/test_h36m_2d_detection.npy',
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
_ = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=False)
custom_dataset = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=True)
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', 'n-mpjpe']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['N-MPJPE'], 0.0)
def test_body3d_semi_supervision_dataset():
# Test Body3d Semi-supervision Dataset
dataset_info = Config.fromfile(
'configs/_base_/datasets/h36m.py').dataset_info
# load labeled dataset
labeled_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causall=False,
temporal_padding=True,
joint_2d_src='gt',
subset=1,
subjects=['S1'],
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
labeled_dataset_cfg = dict(
type='Body3DH36MDataset',
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=labeled_data_cfg,
dataset_info=dataset_info,
pipeline=[])
# load unlabled data
unlabeled_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causal=False,
temporal_padding=True,
joint_2d_src='gt',
subjects=['S5', 'S7', 'S8'],
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl',
need_2d_label=True)
unlabeled_dataset_cfg = dict(
type='Body3DH36MDataset',
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=unlabeled_data_cfg,
dataset_info=dataset_info,
pipeline=[
dict(
type='Collect',
keys=[('input_2d', 'unlabeled_input')],
meta_name='metas',
meta_keys=[])
])
# combine labeled and unlabeled dataset to form a new dataset
dataset = 'Body3DSemiSupervisionDataset'
dataset_class = DATASETS.get(dataset)
custom_dataset = dataset_class(labeled_dataset_cfg, unlabeled_dataset_cfg)
item = custom_dataset[0]
assert custom_dataset.labeled_dataset.dataset_name == 'h36m'
assert 'unlabeled_input' in item.keys()
unlabeled_dataset = build_dataset(unlabeled_dataset_cfg)
assert len(unlabeled_dataset) == len(custom_dataset)
def test_body3d_mpi_inf_3dhp_dataset():
# Test MPI-INF-3DHP dataset
dataset = 'Body3DMpiInf3dhpDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/mpi_inf_3dhp.py').dataset_info
# Test single-frame input on trainset
single_frame_train_data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_train.pkl')
# Test single-frame input on testset
single_frame_test_data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='gt',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_test.pkl')
# Test multi-frame input on trainset
multi_frame_train_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
joint_2d_src='gt',
joint_2d_det_file=None,
causal=True,
temporal_padding=True,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_train.pkl')
# Test multi-frame input on testset
multi_frame_test_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
temporal_padding=True,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_test.pkl')
ann_files = [
'tests/data/mpi_inf_3dhp/test_3dhp_train.npz',
'tests/data/mpi_inf_3dhp/test_3dhp_test.npz'
] * 2
data_cfgs = [
single_frame_train_data_cfg, single_frame_test_data_cfg,
multi_frame_train_data_cfg, multi_frame_test_data_cfg
]
for ann_file, data_cfg in zip(ann_files, data_cfgs):
_ = dataset_class(
ann_file=ann_file,
img_prefix='tests/data/mpi_inf_3dhp',
data_cfg=data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
custom_dataset = dataset_class(
ann_file=ann_file,
img_prefix='tests/data/mpi_inf_3dhp',
data_cfg=data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=True)
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', '3dpck', 'p-3dpck', '3dauc', 'p-3dauc']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['3DPCK'], 100.)
np.testing.assert_almost_equal(infos['P-3DPCK'], 100.)
np.testing.assert_almost_equal(infos['3DAUC'], 30 / 31 * 100)
np.testing.assert_almost_equal(infos['P-3DAUC'], 30 / 31 * 100)
def test_body3dmview_direct_panoptic_dataset():
# Test Mview-Panoptic dataset
dataset = 'Body3DMviewDirectPanopticDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/panoptic_body3d.py').dataset_info
space_size = [8000, 8000, 2000]
space_center = [0, -500, 800]
cube_size = [80, 80, 20]
train_data_cfg = dict(
image_size=[960, 512],
heatmap_size=[[240, 128]],
space_size=space_size,
space_center=space_center,
cube_size=cube_size,
num_joints=15,
seq_list=['160906_band1', '160906_band2'],
cam_list=[(0, 12), (0, 6)],
num_cameras=2,
seq_frame_interval=1,
subset='train',
need_2d_label=True,
need_camera_param=True,
root_id=2)
test_data_cfg = dict(
image_size=[960, 512],
heatmap_size=[[240, 128]],
num_joints=15,
space_size=space_size,
space_center=space_center,
cube_size=cube_size,
seq_list=['160906_band1', '160906_band2'],
cam_list=[(0, 12), (0, 6)],
num_cameras=2,
seq_frame_interval=1,
subset='validation',
need_2d_label=True,
need_camera_param=True,
root_id=2)
with tempfile.TemporaryDirectory() as tmpdir:
_ = dataset_class(
ann_file=tmpdir + '/tmp_train.pkl',
img_prefix='tests/data/panoptic_body3d/',
data_cfg=train_data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
with tempfile.TemporaryDirectory() as tmpdir:
test_dataset = dataset_class(
ann_file=tmpdir + '/tmp_validation.pkl',
img_prefix='tests/data/panoptic_body3d',
data_cfg=test_data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
import copy
gt_num = test_dataset.db_size // test_dataset.num_cameras
results = []
for i in range(gt_num):
index = test_dataset.num_cameras * i
db_rec = copy.deepcopy(test_dataset.db[index])
joints_3d = db_rec['joints_3d']
joints_3d_vis = db_rec['joints_3d_visible']
num_gts = len(joints_3d)
gt_pose = -np.ones((1, 10, test_dataset.num_joints, 5))
if num_gts > 0:
gt_pose[0, :num_gts, :, :3] = np.array(joints_3d)
gt_pose[0, :num_gts, :, 3] = np.array(joints_3d_vis)[:, :, 0] - 1.0
gt_pose[0, :num_gts, :, 4] = 1.0
results.append(dict(pose_3d=gt_pose, sample_id=[i]))
_ = test_dataset.evaluate(results, metric=['mAP', 'mpjpe'])