[d6d24a]: / select_model.py

Download this file

145 lines (130 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from Segmentation.model.unet import UNet, R2_UNet, Nested_UNet, Nested_UNet_v2
from Segmentation.model.segnet import SegNet
from Segmentation.model.deeplabv3 import Deeplabv3, Deeplabv3_plus
from Segmentation.model.vnet import VNet
from Segmentation.model.Hundred_Layer_Tiramisu import Hundred_Layer_Tiramisu
from absl import logging
def select_model(FLAGS, num_classes):
if FLAGS.model_architecture == 'unet':
model_args = [FLAGS.num_filters,
num_classes,
FLAGS.use_2d,
FLAGS.backbone_architecture,
FLAGS.num_conv,
FLAGS.kernel_size,
FLAGS.activation,
FLAGS.use_attention,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.use_dropout,
FLAGS.dropout_rate,
FLAGS.use_spatial,
FLAGS.channel_order]
model_fn = UNet
elif FLAGS.model_architecture == 'vnet':
model_args = [FLAGS.num_filters,
num_classes,
FLAGS.use_2d,
FLAGS.num_conv,
FLAGS.kernel_size,
FLAGS.activation,
FLAGS.use_batchnorm,
FLAGS.dropout_rate,
FLAGS.use_spatial,
FLAGS.channel_order]
model_fn = VNet
elif FLAGS.model_architecture == 'r2unet':
model_args = [FLAGS.num_filters,
num_classes,
FLAGS.use_2d,
FLAGS.num_conv,
FLAGS.kernel_size,
FLAGS.activation,
2,
FLAGS.use_attention,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.channel_order]
model_fn = R2_UNet
elif FLAGS.model_architecture == 'segnet':
model_args = [FLAGS.num_filters,
num_classes,
FLAGS.backbone_architecture,
FLAGS.kernel_size,
(2, 2),
FLAGS.activation,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.use_transpose,
FLAGS.use_dropout,
FLAGS.dropout_rate,
FLAGS.use_spatial,
FLAGS.channel_order]
model_fn = SegNet
elif FLAGS.model_architecture == 'unet++':
model_args = [FLAGS.num_filters,
num_classes,
FLAGS.num_conv,
FLAGS.kernel_size,
FLAGS.activation,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.channel_order]
model_fn = Nested_UNet
elif FLAGS.model_architecture == '100-Layer-Tiramisu':
model_args = [FLAGS.growth_rate,
FLAGS.layers_per_block,
FLAGS.init_num_channels,
num_classes,
FLAGS.kernel_size,
FLAGS.pool_size,
FLAGS.activation,
FLAGS.dropout_rate,
FLAGS.strides,
FLAGS.padding]
model_fn = Hundred_Layer_Tiramisu
elif FLAGS.model_architecture == 'deeplabv3':
model_args = [num_classes,
FLAGS.kernel_size_initial_conv,
FLAGS.num_filters_atrous,
FLAGS.num_filters_DCNN,
FLAGS.num_filters_ASPP,
FLAGS.kernel_size_atrous,
FLAGS.kernel_size_DCNN,
FLAGS.kernel_size_ASPP,
'same',
FLAGS.activation,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.channel_order,
FLAGS.MultiGrid,
FLAGS.rate_ASPP,
FLAGS.output_stride]
model_fn = Deeplabv3
elif FLAGS.model_architecture == 'deeplabv3_plus':
model_args = [num_classes,
FLAGS.kernel_size_initial_conv,
FLAGS.num_filters_atrous,
FLAGS.num_filters_DCNN,
FLAGS.num_filters_ASPP,
FLAGS.kernel_size_atrous,
FLAGS.kernel_size_DCNN,
FLAGS.kernel_size_ASPP,
FLAGS.num_filters_final_encoder,
FLAGS.num_filters_from_backbone,
FLAGS.num_channels_UpConv,
FLAGS.kernel_size_UpConv,
(2, 2),
False,
FLAGS.use_transpose,
'same',
FLAGS.activation,
FLAGS.use_batchnorm,
FLAGS.use_bias,
FLAGS.channel_order,
FLAGS.MultiGrid,
FLAGS.rate_ASPP,
FLAGS.output_stride]
model_fn = Deeplabv3_plus
else:
logging.error('The model architecture {} is not supported!'.format(FLAGS.model_architecture))