[d6d24a]: / Segmentation / utils / data_loader_3d.py

Download this file

219 lines (191 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from glob import glob
import h5py
import numpy as np
from random import randint
from tensorflow.keras.utils import Sequence
import tensorflow as tf
from math import ceil
class VolumeGenerator(Sequence):
def __init__(self, batch_size, sample_shape=(364, 364, 160),
file_path='t', shuffle_order=True,
normalise_input=True, remove_outliers=True,
transform_angle=False, transform_position=False,
get_slice=False, get_position=False, skip_empty=True,
examples_per_load=1, train_debug=False):
self.batch_size = batch_size
self.sample_shape = sample_shape
self.data_paths = VolumeGenerator.get_paths(file_path)
self.shuffle_order = shuffle_order
self.normalise_input = normalise_input
self.remove_outliers = remove_outliers
self.transform_angle = transform_angle
self.transform_position = transform_position
self.get_slice = get_slice
self.get_position = get_position
self.skip_empty = skip_empty
self.examples_per_load = examples_per_load
self.train_debug = train_debug
if self.train_debug:
cut = int(len(self.data_paths) / 5)
self.data_paths = self.data_paths[:cut]
assert self.batch_size <= len(self.data_paths), f"Batch size {self.batch_size} must be less than or equal to number of training examples {len(self.data_paths)}"
self.on_epoch_end()
def on_epoch_end(self):
self.indexes = np.arange(len(self.data_paths))
if self.shuffle_order:
np.random.shuffle(self.indexes)
def __len__(self):
return ceil(len(self.data_paths) / self.batch_size)
def __getitem__(self, index):
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
batch = [self.data_paths[idx] for idx in indexes]
x, y = self.generate_batch(batch)
return x, y
def generate_batch(self, batch, skip_fail=3):
x_train, y_train = [], []
if self.get_position:
image_arr, pos_arr = [], []
for sample_path in batch:
count = self.examples_per_load
skip_count = skip_fail
x_path, y_path = sample_path
volume_x_original = VolumeGenerator.load_file(x_path)
volume_y_original = VolumeGenerator.load_file(y_path)
while count > 0:
sample_pos, sample_pos_max = VolumeGenerator.get_sample_pos(volume_x_original.shape, self.sample_shape,
self.transform_position)
volume_x = VolumeGenerator.sample_from_volume(volume_x_original, self.sample_shape, sample_pos)
volume_y = VolumeGenerator.sample_from_volume(volume_y_original, self.sample_shape, sample_pos)
volume_y = np.any(volume_y, axis=-1)
if self.normalise_input or self.remove_outliers:
mean = tf.math.reduce_mean(volume_x)
if self.remove_outliers:
np.clip(volume_x, None, 0.01, volume_x)
if self.normalise_input:
volume_x = VolumeGenerator.normalise(volume_x, mean)
volume_x = VolumeGenerator.expand_dim_as_float(volume_x)
volume_y = VolumeGenerator.expand_dim_as_float(volume_y)
if self.get_slice:
slice_idx = int((self.sample_shape[2] + 1) / 2) - 1
assert slice_idx >= 0
volume_y = volume_y[:, :, slice_idx]
if self.skip_empty:
if np.sum(volume_y) == 0:
skip_count -= 1
if skip_count > 0:
continue
if self.get_position:
image_arr.append(volume_x)
pos = np.empty(3, dtype=np.float32)
for i in range(3):
pos[i] = VolumeGenerator.normalise_position(sample_pos[i], sample_pos_max[i])
pos_arr.append(pos)
else:
x_train.append(volume_x)
y_train.append(volume_y)
count -= 1
if self.get_position:
image_arr = np.stack(image_arr, axis=0)
pos_arr = np.stack(pos_arr, axis=0)
x_train = [image_arr, pos_arr]
else:
x_train = np.stack(x_train, axis=0)
y_train = np.stack(y_train, axis=0)
return x_train, y_train
@staticmethod
def get_sample_pos(volume_shape, sample_shape, transform_position):
"""
- Get the position required to translate the volumes by. Ranges from 0 to volume_shape - sample_shape
- If (volume_shape - sample_shape) == 0, sample and volume same shape. Also the position is centred.
"""
vol_x, vol_y, vol_z = volume_shape[0] - 1, volume_shape[1] - 1, volume_shape[2] - 1
samp_x, samp_y, samp_z = sample_shape[0] - 1, sample_shape[1] - 1, sample_shape[2] - 1
centre_x = int(vol_x / 2) - int(samp_x / 2)
centre_y = int(vol_y / 2) - int(samp_y / 2)
centre_z = int(vol_z / 2) - int(samp_z / 2)
x_max = volume_shape[0] - sample_shape[0]
y_max = volume_shape[1] - sample_shape[1]
z_max = volume_shape[2] - sample_shape[2]
pos_max = np.array([x_max, y_max, z_max], dtype=np.int32)
pos = None
if transform_position == "normal":
stddev_x = int(centre_x / 4)
stddev_y = int(centre_y / 4)
stddev_z = int(centre_z / 4)
x_pos = np.random.normal(centre_x, stddev_x)
y_pos = np.random.normal(centre_y, stddev_y)
z_pos = np.random.normal(centre_z, stddev_z)
float_pos = np.array([x_pos, y_pos, z_pos], dtype=np.float32)
float_pos = np.clip(float_pos, 0, [x_max, y_max, z_max])
pos = np.rint(float_pos)
elif transform_position == "uniform":
x_pos = np.random.uniform(0, x_max)
y_pos = np.random.uniform(0, y_max)
z_pos = np.random.uniform(0, z_max)
float_pos = np.array([x_pos, y_pos, z_pos], dtype=np.float32)
pos = np.rint(float_pos)
else:
x_pos = centre_x
y_pos = centre_y
z_pos = centre_z
pos = np.array([x_pos, y_pos, z_pos], dtype=np.int32)
pos = pos.astype(int)
return pos, pos_max
@staticmethod
def get_paths(file_path):
if file_path == "t":
file_path = "./Data/train/train"
elif file_path == "v":
file_path = "./Data/valid/valid"
X_list = glob(f'{file_path}*.im')
Y_list = glob(f'{file_path}*.seg')
data_paths = []
for x_name in X_list:
x_id = x_name[-10:-3]
y_name = f'{file_path}_{x_id}.seg'
assert y_name in Y_list, "{y_name} is missing in the data file"
data_paths.append([x_name, y_name])
return data_paths
@staticmethod
def load_file(file):
with h5py.File(file, 'r') as hf:
volume = np.array(hf['data'])
return volume
@staticmethod
def sample_from_volume(volume, sample_shape, sample_pos):
pos_x, pos_y, pos_z = sample_pos
volume_sample = volume[pos_x: pos_x + sample_shape[0],
pos_y: pos_y + sample_shape[1],
pos_z: pos_z + sample_shape[2]]
return volume_sample
@staticmethod
def normalise(x_image, mean=None, std=None):
if mean is None:
mean = tf.math.reduce_mean(x_image)
if std is None:
std = tf.math.reduce_std(x_image)
return (x_image - mean) / std
@staticmethod
def expand_dim_as_float(volume):
return np.expand_dims(volume, axis=-1).astype(np.float32)
@staticmethod
def normalise_position(pos, pos_max):
"""
- Recieved the pos which is a value from 0 to (length - sample size)
- A value scaled between -1 and 1 where 0 represents a sample from the centre.
"""
if pos_max == 0:
return 0
return 2 * ((pos / pos_max) - 0.5)
if __name__ == "__main__":
import sys
import os
sys.path.insert(0, os.getcwd())
add_pos = True
vol_gen = VolumeGenerator(1, (384, 384, 128), get_position=add_pos, examples_per_load=1)
x, y = vol_gen.__getitem__(0)
if add_pos:
print(x[0].shape)
print(x[1].shape)
print(y.shape)
print(y.dtype)