[d6d24a]: / Segmentation / train / train.py

Download this file

366 lines (322 with data), 16.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import sys
import os
from glob import glob
import datetime
import tensorflow as tf
import numpy as np
from time import time
from Segmentation.train.utils import setup_gpu, LearningRateUpdate, Metric
from Segmentation.train.reshape import get_mid_slice, get_mid_vol
from Segmentation.train.validation import validate_best_model
from Segmentation.utils.data_loader import read_tfrecord_3d
from Segmentation.utils.visualise_utils import visualise_sample
from Segmentation.utils.losses import dice_loss, tversky_loss, iou_loss
from Segmentation.utils.losses import iou_loss_eval_3d, dice_coef_eval_3d
from Segmentation.utils.losses import dice_loss_weighted_3d, focal_tversky
from Segmentation.model.vnet import VNet
class Train:
def __init__(self,
epochs,
batch_size,
enable_function,
model,
optimizer,
loss_func,
lr_manager,
predict_slice,
metrics,
tfrec_dir='./Data/tfrecords/',
log_dir="logs"):
self.epochs = epochs
self.batch_size = batch_size
self.enable_function = enable_function
self.model = model
self.optimizer = optimizer
self.loss_func = loss_func
self.lr_manager = lr_manager
self.predict_slice = predict_slice
self.metrics = Metric(metrics)
self.tfrec_dir = tfrec_dir
self.log_dir = log_dir
def train_step(self,
x_train,
y_train,
visualise):
with tf.GradientTape() as tape:
predictions = self.model(x_train, training=True)
loss = self.loss_func(y_train, predictions)
grads = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
self.metrics.store_metric(y_train, predictions, training=True)
if visualise:
return loss, predictions
return loss, None
def test_step(self,
x_test,
y_test,
visualise):
predictions = self.model(x_test, training=False)
loss = self.loss_func(y_test, predictions)
self.metrics.store_metric(y_test, predictions, training=False)
if visualise:
return loss, predictions
return loss, None
def train_model_loop(self,
train_ds,
valid_ds,
strategy,
multi_class,
visual_save_freq=5,
debug=False,
num_to_visualise=0):
""" Trains 3D model with custom tf loop and MirrorStrategy
"""
def run_train_strategy(x, y, visualise):
total_step_loss, pred = strategy.run(self.train_step, args=(x, y, visualise, ))
return strategy.reduce(
tf.distribute.ReduceOp.SUM, total_step_loss, axis=None), pred
def run_test_strategy(x, y, visualise):
total_step_loss, pred = strategy.run(self.test_step, args=(x, y, visualise, ))
return strategy.reduce(
tf.distribute.ReduceOp.SUM, total_step_loss, axis=None), pred
# TODO(Joe): This needs to be rewritten so that it works with 2D as well
def distributed_train_epoch(train_ds,
epoch,
strategy,
num_to_visualise,
multi_class,
slice_writer,
vol_writer,
visual_save_freq,
predict_slice):
total_loss, num_train_batch = 0.0, 0.0
is_training = True
use_2d = False
for x_train, y_train in train_ds:
visualise = (num_train_batch < num_to_visualise)
loss, pred = run_train_strategy(x_train, y_train, visualise)
loss /= strategy.num_replicas_in_sync
total_loss += loss
if visualise:
num_to_visualise = visualise_sample(x_train, y_train, pred,
num_to_visualise,
slice_writer, vol_writer,
use_2d, epoch, multi_class, predict_slice, is_training)
num_train_batch += 1
return total_loss / num_train_batch
def distributed_test_epoch(valid_ds,
epoch,
strategy,
num_to_visualise,
multi_class,
slice_writer,
vol_writer,
visual_save_freq,
predict_slice):
total_loss, num_test_batch = 0.0, 0.0
is_training = False
use_2d = False
for x_valid, y_valid in valid_ds:
visualise = (num_test_batch < num_to_visualise)
loss, pred = run_test_strategy(x_valid, y_valid, visualise)
loss /= strategy.num_replicas_in_sync
total_loss += loss
if visualise:
num_to_visualise = visualise_sample(x_train, y_train, pred,
num_to_visualise,
slice_writer, vol_writer,
use_2d, epoch, multi_class, predict_slice, is_training)
num_test_batch += 1
return total_loss / num_test_batch
if self.enable_function:
run_train_strategy = tf.function(run_train_strategy)
run_test_strategy = tf.function(run_test_strategy)
# TODO: This whole chunk of code needs to be refactored. Perhaps write it as a function
name = "/" + self.model.name
db = "/debug" if debug else "/test"
mc = "/multi" if multi_class else "/binary"
log_dir_now = self.log_dir + name + db + mc + datetime.datetime.now().strftime("/%Y%m%d/%H%M%S")
train_summary_writer = tf.summary.create_file_writer(log_dir_now + '/train')
test_summary_writer = tf.summary.create_file_writer(log_dir_now + '/val')
test_min_summary_writer = tf.summary.create_file_writer(log_dir_now + '/val_min')
train_img_slice_writer = tf.summary.create_file_writer(log_dir_now + '/train/img/slice')
test_img_slice_writer = tf.summary.create_file_writer(log_dir_now + '/val/img/slice')
train_img_vol_writer = tf.summary.create_file_writer(log_dir_now + '/train/img/vol')
test_img_vol_writer = tf.summary.create_file_writer(log_dir_now + '/val/img/vol')
lr_summary_writer = tf.summary.create_file_writer(log_dir_now + '/lr')
self.metrics.add_metric_summary_writer(log_dir_now)
best_loss = None
for e in range(self.epochs):
self.optimizer.learning_rate = self.lr_manager.update_lr(e)
et0 = time()
train_loss = distributed_train_epoch(train_ds,
e,
strategy,
num_to_visualise,
multi_class,
train_img_slice_writer,
train_img_vol_writer,
visual_save_freq,
self.predict_slice)
with train_summary_writer.as_default():
tf.summary.scalar('epoch_loss', train_loss, step=e)
# distributed_test_epoch(valid_ds,
# e,
# strategy,
# num_to_visualise,
# multi_class,
# test_img_slice_writer,
# test_img_vol_writer,
# visual_save_freq,
# self.predict_slice)
test_loss = distributed_test_epoch(valid_ds,
e,
strategy,
num_to_visualise,
multi_class,
test_img_slice_writer,
test_img_vol_writer,
visual_save_freq,
self.predict_slice)
with test_summary_writer.as_default():
tf.summary.scalar('epoch_loss', test_loss, step=e)
current_lr = self.optimizer.get_config()['learning_rate']
with lr_summary_writer.as_default():
tf.summary.scalar('epoch_lr', current_lr, step=e)
self.metrics.record_metric_to_summary(e)
metric_str = self.metrics.reset_metrics_get_str()
print(f"Epoch {e+1}/{self.epochs} - {time() - et0:.0f}s - loss: {train_loss:.05f} - val_loss: {test_loss:.05f} - lr: {self.optimizer.get_config()['learning_rate']: .06f}" + metric_str)
if best_loss is None:
self.model.save_weights(os.path.join(log_dir_now + f'/best_weights.tf'))
best_loss = test_loss
else:
if test_loss < best_loss:
self.model.save_weights(os.path.join(log_dir_now + f'/best_weights.tf'))
best_loss = test_loss
with test_min_summary_writer.as_default():
tf.summary.scalar('epoch_loss', best_loss, step=e)
return log_dir_now
def load_datasets(batch_size, buffer_size,
tfrec_dir='./Data/tfrecords/',
multi_class=False,
crop_size=144,
depth_crop_size=80,
aug=[],
predict_slice=False,
):
"""
Loads tf records datasets for 3D models.
"""
args = {
'batch_size': batch_size,
'buffer_size': buffer_size,
'multi_class': multi_class,
'use_keras_fit': False,
'crop_size': crop_size,
'depth_crop_size': depth_crop_size,
'aug': aug,
}
train_ds = read_tfrecord_3d(tfrecords_dir=os.path.join(tfrec_dir, 'train_3d/'),
is_training=True, predict_slice=predict_slice, **args)
valid_ds = read_tfrecord_3d(tfrecords_dir=os.path.join(tfrec_dir, 'valid_3d/'),
is_training=False, predict_slice=predict_slice, **args)
return train_ds, valid_ds
def build_model(num_channels, num_classes, name, **kwargs):
"""
Builds standard vnet for 3D
"""
model = VNet(num_channels, num_classes, name=name, **kwargs)
return model
def main(epochs,
name,
log_dir_now=None,
batch_size=2,
val_batch_size=2,
lr=1e-4,
lr_drop=0.9,
lr_drop_freq=5,
lr_warmup=3,
num_to_visualise=2,
num_channels=4,
buffer_size=4,
enable_function=True,
tfrec_dir='./Data/tfrecords/',
multi_class=False,
crop_size=144,
depth_crop_size=80,
aug=[],
debug=False,
predict_slice=False,
tpu=False,
min_lr=1e-7,
custom_loss=None,
**model_kwargs,
):
t0 = time()
if tpu:
tfrec_dir = 'gs://oai-challenge-dataset/tfrecords'
num_classes = 7 if multi_class else 1
metrics = {
'losses': {
'mIoU': [iou_loss, tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), None, None],
'dice': [dice_loss, tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), None, None]
},
}
if multi_class:
metrics['losses']['mIoU-6ch'] = [iou_loss_eval_3d, tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), None, None]
metrics['losses']['dice-6ch'] = [dice_coef_eval_3d, tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), None, None]
train_ds, valid_ds = load_datasets(batch_size, buffer_size, tfrec_dir, multi_class,
crop_size=crop_size, depth_crop_size=depth_crop_size, aug=aug,
predict_slice=predict_slice)
num_gpu = len(tf.config.experimental.list_physical_devices('GPU'))
steps_per_epoch = len(glob(os.path.join(tfrec_dir, 'train_3d/*'))) / (batch_size)
if tpu:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='pit-tpu')
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
else:
strategy = tf.distribute.MirroredStrategy()
# strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
with strategy.scope():
if custom_loss is None:
loss_func = tversky_loss if multi_class else dice_loss
elif multi_class and custom_loss == "weighted":
loss_func = dice_loss_weighted_3d
elif multi_class and custom_loss == "focal":
loss_func = focal_tversky
else:
raise NotImplementedError(f"Custom loss: {custom_loss} not implemented.")
lr_manager = LearningRateUpdate(lr, lr_drop, lr_drop_freq, warmup=lr_warmup, min_lr=min_lr)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
model = build_model(num_channels, num_classes, name, predict_slice=predict_slice, **model_kwargs)
trainer = Train(epochs, batch_size, enable_function,
model, optimizer, loss_func, lr_manager, predict_slice, metrics,
tfrec_dir=tfrec_dir)
train_ds = strategy.experimental_distribute_dataset(train_ds)
valid_ds = strategy.experimental_distribute_dataset(valid_ds)
if log_dir_now is None:
log_dir_now = trainer.train_model_loop(train_ds, valid_ds, strategy, multi_class, debug, num_to_visualise)
train_time = time() - t0
print(f"Train Time: {train_time:.02f}")
t1 = time()
with strategy.scope():
model = build_model(num_channels, num_classes, name, predict_slice=predict_slice, **model_kwargs)
model.load_weights(os.path.join(log_dir_now + f'/best_weights.tf')).expect_partial()
print("Validation for:", log_dir_now)
if not predict_slice:
total_loss, metric_str = validate_best_model(model,
log_dir_now,
val_batch_size,
buffer_size,
tfrec_dir,
multi_class,
crop_size,
depth_crop_size,
predict_slice,
Metric(metrics))
print(f"Train Time: {train_time:.02f}")
print(f"Validation Time: {time() - t1:.02f}")
print(f"Total Time: {time() - t0:.02f}")
with open("results/3d_result.txt", "a") as f:
f.write(f'{log_dir_now}: total_loss {total_loss} {metric_str} \n')